cindy goes dodo - unicamprepositorio.unicamp.br/bitstream/reposip/304942/1/dodo_cindygoe… ·...

63
UNIVERSIDADE ESTADUAL DE CAMPINAS FACULDADE DE ODONTOLOGIA DE PIRACICABA Cindy Goes Dodo O efeito de partículas de titânio na osseointegração The effect of titanium particles on the osseointegration Piracicaba 2016

Upload: others

Post on 22-Jul-2020

11 views

Category:

Documents


1 download

TRANSCRIPT

Page 1: Cindy Goes Dodo - Unicamprepositorio.unicamp.br/bitstream/REPOSIP/304942/1/Dodo_CindyGoe… · CINDY GOES DODO O efeito de partículas de titânio na osseointegração. The effect

UNIVERSIDADE ESTADUAL DE CAMPINAS

FACULDADE DE ODONTOLOGIA DE PIRACICABA

Cindy Goes Dodo

O efeito de partículas de titânio na osseointegração

The effect of titanium particles on the osseointegration

Piracicaba

2016

Page 2: Cindy Goes Dodo - Unicamprepositorio.unicamp.br/bitstream/REPOSIP/304942/1/Dodo_CindyGoe… · CINDY GOES DODO O efeito de partículas de titânio na osseointegração. The effect

CINDY GOES DODO

O efeito de partículas de titânio na osseointegração.

The effect of titanium particles on the osseointegration.

Orientador: Altair Antoninha Del Bel Cury

Piracicaba

2016

ESTE EXEMPLAR CORRESPONDE À VERSÃO FINAL DA TESE DEFENDIDA PELA ALUNA CINDY GOES DODO, E ORIENTADA PELA PROFA. DRA. ALTAIR ANTONINHA DEL BEL CURY

Thesis presented to the Piracicaba

Dental School of the University of Campinas

in partial fulfillment of the requirements for the

degree of Doctor in Dental Clinic, in Dental

Prosthesis area

Tese apresentada à Faculdade de

Odontologia de Piracicaba da Universidade

Estadual de Campinas como parte dos

requisitos exigidos para a obtenção do título de

Doutora em Clínica Odontológica, área de

concentração em Prótese Dental

Page 3: Cindy Goes Dodo - Unicamprepositorio.unicamp.br/bitstream/REPOSIP/304942/1/Dodo_CindyGoe… · CINDY GOES DODO O efeito de partículas de titânio na osseointegração. The effect
Page 4: Cindy Goes Dodo - Unicamprepositorio.unicamp.br/bitstream/REPOSIP/304942/1/Dodo_CindyGoe… · CINDY GOES DODO O efeito de partículas de titânio na osseointegração. The effect
Page 5: Cindy Goes Dodo - Unicamprepositorio.unicamp.br/bitstream/REPOSIP/304942/1/Dodo_CindyGoe… · CINDY GOES DODO O efeito de partículas de titânio na osseointegração. The effect

DEDICATÓRIA

Dedico esta tese à minha família, por todo amor, apoio e incentivo

para a conclusão deste trabalho.

Page 6: Cindy Goes Dodo - Unicamprepositorio.unicamp.br/bitstream/REPOSIP/304942/1/Dodo_CindyGoe… · CINDY GOES DODO O efeito de partículas de titânio na osseointegração. The effect

Agradecimento Especial

À minha orientadora, Profa. Dra. Altair Antoninha Del Bel Cury pela

confiança, dedicação e paciência durante minha formação. Sou extremamente grata

por acreditar na minha capacidade, por me estimular e por tentar incansavelmente

extrair todo meu potencial. Certamente levarei seu exemplo profissional e humano

para toda a minha vida.

Page 7: Cindy Goes Dodo - Unicamprepositorio.unicamp.br/bitstream/REPOSIP/304942/1/Dodo_CindyGoe… · CINDY GOES DODO O efeito de partículas de titânio na osseointegração. The effect

Agradecimentos

A Deus, a quem sou grata por esta jornada, onde tenho a oportunidade de

evoluir e aprender.

A Universidade Estadual de Campinas por meio do seu magnífico Reitor,

Prof. Dr. José Tadeu.

A Faculdade de Odontologia de Piracicaba da Universidade Estadual de

Campinas, na pessoa de seu Diretor, Prof. Dr. Guilherme Elias Pessanha Henriques.

A Coordenadora dos Cursos de Pós-Graduação da Faculdade de

Odontologia de Piracicaba, Profa. Dra. Cínthia Pereira Machado Tabchoury.

A Coordenadora do Programa de Pós-Graduação em Clínica Odontológica

da Faculdade de Odontologia de Piracicaba da Universidade Estadual de Campinas,

Prof. Dra. Karina Gonzales Silvério Ruiz.

A Fundação de Amparo à Pesquisa do Estado de São Paulo, FAPESP, pelas

bolsas de estudo de Mestrado (2011/16318-8), Doutorado Direto (2013/19791-8) e

Estágio Pesquisa no Exterior (BEPE, 2014/10085-6) na Universidade de Rochester,

NY, Estados Unidos da América.

A Universidade de Rochester, por meio do magnífico Reitor Dr. Joel Seligman e ao Diretor da Faculdade de Medicina e Odontologia Dr. Mark B. Taubman pela

oportunidade do estágio.

Ao Prof. Dr. Luiz Meirelles e sua família pela amizade, convivência e

confiança. Agradeço ao Professor pelas inúmeras oportunidades de aprendizado

durante meu estágio no Eastman Institute for Oral Health sob sua orientação. Seu

desempenho como professor e pesquisador é inspirador.

Aos professores Profa. Dra. Jacqueline Abranches e Prof. Dr. José Lemos por me receberem em seu laboratório para o desenvolvimento de parte deste trabalho.

Page 8: Cindy Goes Dodo - Unicamprepositorio.unicamp.br/bitstream/REPOSIP/304942/1/Dodo_CindyGoe… · CINDY GOES DODO O efeito de partículas de titânio na osseointegração. The effect

Aos docentes da área de Prótese Dentária da Faculdade de Odontologia de

Piracicaba, Prof. Dr. Guilherme Elias Pessanha Henriques, Prof. Dr. Marcelo Ferraz Mesquita, Prof. Dr. Mauro Antônio de Arruda Nóbilo, Prof. Dr. Rafael Leonardo Xediek Consani e Prof. Valentim Adelino Ricardo Barão por

contribuírem com minha formação pessoal e profissional ao longo da pós-graduação.

Aos Professores da Área de Prótese Parcial Removível, Profa. Dra. Célia Rizatti Barbosa, Prof. Dra. Renata Cunha Matheus Rodrigues Garcia, e Prof. Dr. Wander José da Silva pelo conhecimento compartilhado, boa convivência, carinho e

atenção.

A todos os docentes do Programa de Pós-Graduação em Clínica Odontológica

da Faculdade de Odontologia de Piracicaba, Universidade Estadual de Campinas, que

de alguma forma contribuíram para meu aprendizado e crescimento profissional.

A Sra. Eliete Lima secretária da Área de Prótese pelo carinho, atenção e

disponibilidade.

A Sra. Gislaine Piton, técnica do Laboratório de Prótese Parcial Removível,

por cuidar com tanto carinho e dedicação do nosso laboratório e alunos.

A Área de Periodontia pela oportunidade de utilizar o laboratório de Biologia

Molecular para o desenvolvimento deste trabalho, em especial à Profa. Dra. Karina Gonzalez.

Aos Professores Prof. Dr. Marcelo Mesquita, Prof. Dr. Valentim Barão, Profa. Dra. Fernanda Faot, pela solicitude e bons conselhos.

Aos técnicos Sr. Adriano Martins, Sra. Eliene Navares, Sra. Mariana Lazarin, pela disponibilidade e aprendizado.

A todos amigos e colegas de pós-graduação pela convivência agradável,

aprendi e me diverti muito com todos vocês. Em especial agradeço aos amigos Plinio Mendes Senna, Antonio Pedro Ricomini, Bruno Salles Sotto-Maior, Marcele Pimentel Jardim, Indira Cavalcanti, Germana de Villa Camargos, Priscilla Cardoso Lazari, Isabella Marques, Claudia Brilhante, Paula Bavia, Lis Meirelles, Ana Paula Martins, Marco Aurélio de Carvalho, Giselle Ribeiro, Camila Heitor, Larissa Vila Nova, Guilherme Henrique Oliveira, Thais Veja Gonçalves, Bruna

Page 9: Cindy Goes Dodo - Unicamprepositorio.unicamp.br/bitstream/REPOSIP/304942/1/Dodo_CindyGoe… · CINDY GOES DODO O efeito de partículas de titânio na osseointegração. The effect

Alfenas, Dimorvan Bordin e Edmara Tatiely Pedroso Bergamo que colaboraram

em muitos sentidos para o desenvolvimento deste trabalho, seja compartilhando

conhecimento, corrigindo um documento, me aconselhando ou simplesmente me

ouvindo.

As minhas queridas amigas Thatiana de Vicente Leite, Caroline Hanada Odo, Pamela Saporski, Polliane Sciliano, Izabella Patta Pereira, Mabelle Monteiro, Sthefanie Furlan, Ana Carolina Horita, Larissa Resende, Carolina Ventura Beatriz Porto, e Núbia Pini, por me apoiarem e me darem forças para

sempre seguir em frente.

A toda a minha Família por me apoiar incondicionalmente em todas as minhas

decisões, por ser minha base e minha estrutura. Este trabalho não teria se

concretizado sem a ajuda de cada um de vocês.

Page 10: Cindy Goes Dodo - Unicamprepositorio.unicamp.br/bitstream/REPOSIP/304942/1/Dodo_CindyGoe… · CINDY GOES DODO O efeito de partículas de titânio na osseointegração. The effect

Resumo Tratamentos de superfície em implantes dentais de titânio têm sido desenvolvidos para aumentar a rugosidade de superfície e consequentemente melhorar a osseointegração. Apesar do sucesso clínico dos implantes dentais, em muitos casos pode ocorrer perda óssea marginal e o mecanismo relacionado a este processo não está claro na literatura. Alguns estudos descrevem que, durante a inserção do implante no osso, os picos criados para produzir superfícies rugosas, podem se quebrar em micro e/ou nanopartículas de titânio, que são liberadas no tecido peri-implantar e podem levar a perda óssea. O sistema imune reage na presença dessas partículas, sendo os macrófagos a primeira linhagem celular a entrar em contato com essas partículas. Um processo inflamatório exacerbado pode ser gerado, levando a produção de citocinas pro-inflamatórias ligadas ao processo osteolítico. Portanto, para avaliar a resposta inflamatória de macrófagos, um estudo in vitro (Estudo 1) foi desenvolvido cultivando células THP-1 na presença de micro e nanopartículas de titânio em associação com Lipopolissacárido de Porphyromonas gingivalis (LPS PG), patógeno comum da microbiota oral, durante 12 h, 24, 48h. Foram avaliadas as citocinas pró-inflamatórias TNF-α, IL1-β, IL-6 que estão relacionadas com o processo osteolítico, quanto a expressão gênica pelo método ΔΔCq e Elisa. Os dados foram analisados usando análise de variância com dois fatores e teste de Tukey (p <0,05). De acordo com os resultados a presença de micro e nanopartículas titânio a expressão gênica e a produção de citocinas pró-inflamatórias aumentou em comparação ao controle, e a associação de partículas de titânio e LPS PG não aumentou a expressão gênica e a produção de citocinas comparado com os grupos tratados somente com partículas de titânio. Também para avaliar a reação óssea na presença de partículas de titânio um estudo in vivo (estudo 2) foi realizado com 14 coelhos New Zealand. Implantes com superfície lisa foram inseridos na tíbia com 3 mg de micropartículas de titânio e no fêmur com 1 mg de micropartículas dos animais, em ambas as pernas. Os dados foram analisados por regressão de modelo misto (p <0,05). Após 7 e 28 dias uma diminuição no contato osso/implante no grupo com partículas em relação ao controle foi observado pelas análises histológica e histomorfométrica. Além disso, 6 animais receberam 12 implantes na tíbia para avaliar a expressão gênica de fatores pró-osteogênicos e foi observado que após 7 dias houve diminuição desses fatores para os grupos com partículas comparado ao controle. Pode-se concluir que partículas de titânio afetam os estágios iniciais da osseointegração. Palavras-Chave: Implante dentário, Citocinas, Reabsorção Óssea, Osteólise.

Page 11: Cindy Goes Dodo - Unicamprepositorio.unicamp.br/bitstream/REPOSIP/304942/1/Dodo_CindyGoe… · CINDY GOES DODO O efeito de partículas de titânio na osseointegração. The effect

Abstract Dental implant surface treatments are being developed in order to increase roughness and consequently improve chemotaxis to optimize osseointegration. Despite the clinical success of dental implants, it is known that in many cases, marginal bone loss occurs in the peri-implant area and the mechanism related to this process is not clear in the literature. Some studies described that during implant insertion the peaks created to produce rougher surfaces, are prone to break and micro and nanoparticles of titanium are released in the peri-implant tissue culminating in an osteolytic process. The immune system reacts against the shed particles and the macrophages are the first cell linage interacting with titanium particles stimulating an inflammatory process that can overproduce cytokines, leading to bone resorption. In order to evaluate inflammatory response by macrophages, an in vitro study (Study 1) was developed culturing THP-1 cell linage in the presence of micro and nanoparticles of titanium in association with Lipopolysaccharide from Porphyromonas gengivalis (LPS PG) for 12h, 24 and 48h and pro-inflammatory cytokines related to the osteolytic process TNF-α, IL1-β, IL-6 were evaluated. Gene expression was analyzed using ΔΔCq method and Elisa comparing to the standard curve, the data were analyzed using ANOVA two-way and Tukey’s test (p<0.05). As results it was observed that in the presence of micro and nanoparticles of titanium gene expression and protein production were increased compared to control, and the association of titanium particles and LPS PG did not increase gene expression and protein production compared to groups treated with titanium particles. Also to assess bone reaction in the presence of titanium microparticles an animal study (Study 2) was performed with 14 New Zealand White Rabbits, implants with turned surface were placed in tibia with 3mg of microparticles of titanium and femur using 1mg of microparticles of titanium in both legs of the animals. Data were analyzed using regression mixed model (p<0.05). After 7 and 28 days bone contact decreases in test group compared to control by histological and histomorphometric analysis. Moreover, 6 animals received 12 implants in tibia to evaluate the main osteogenic genes and after 7 days a decrease in the expression was observed. Conclusively the presence of titanium particles affects early stages of osseointegration.

Keywords: Dental Implants, Cytokines, Osteolysis, Bone resorption

Page 12: Cindy Goes Dodo - Unicamprepositorio.unicamp.br/bitstream/REPOSIP/304942/1/Dodo_CindyGoe… · CINDY GOES DODO O efeito de partículas de titânio na osseointegração. The effect

SUMÁRIO

1 INTRODUÇÃO ....................................................................................................... 16

2 ARTIGOS ............................................................................................................... 21

2.1 PRO-INFLAMMATORY ANALYSIS OF HUMAN MACROPHAGE IN CONTACT WITH TITANIUM

MICRO/NANOPARTICLES AND PORPHYROMONAS GINGIVALIS .................................................. 212.2 ARTIGO: TITANIUM PARTICLES AFFECT EARLY STAGES OF OSSEOINTEGRATION ............... 41

3 DISCUSSÃO .......................................................................................................... 57

4 CONCLUSÃO ........................................................................................................ 61

REFERÊNCIAS ......................................................................................................... 62

Page 13: Cindy Goes Dodo - Unicamprepositorio.unicamp.br/bitstream/REPOSIP/304942/1/Dodo_CindyGoe… · CINDY GOES DODO O efeito de partículas de titânio na osseointegração. The effect

16

1 INTRODUÇÃO

O titânio e suas ligas tem sido utilizados como implantes, na área

ortopédica e odontológica, devido ao benefício de suas propriedades químicas e

mecânicas (Albrektsson and Sennerby, 1990a). Uma camada estável de óxidos se

forma quando o titânio é exposto ao oxigênio e essa camada hidrofílica confere

biocompatibilidade a superfície (Neoh et al., 2012). A osseointegração é o contato

direto entre osso vital e a superfície de um implante de titânio submetido à carga

funcional. Esse conceito de união direta entre osso vital e a superfície do implante, em

nível de microscopia óptica, confere o sucesso do uso de implantes de titânio para o

suporte de próteses dentais e ortopédicas (Albrektsson, 1983; Albrektsson and

Sennerby, 1990b).

Mesmo após a consolidação do uso clínico dos implantes, as pesquisas se

concentraram na melhoria dos já expressivos índices de sucesso (Albrektsson et al.,

1986a; Wennerberg and Albrektsson, 2009). Portanto, modificações na superfície dos

implantes tiveram como objetivo aumentar a previsibilidade clínica para melhorar o

prognóstico do tratamento e, diminuir o tempo de cicatrização para a instalação de

próteses (Borsari et al., 2005; Terheyden et al., 2012). Para os implantes

odontológicos, as modificações também objetivaram diminuir o fenômeno de

reabsorção óssea cervical ao redor dos implantes osseointegrados conhecido como

saucerização óssea, onde uma perda inicial de 1,5mm no primeiro ano e de até 2mm

em 5 anos é considerado dentro da normalidade, (Albrektsson et al., 1986b;

Albrektsson et al., 2012).

Geralmente as modificações são caracterizadas pelo aumento da

rugosidade de superfície, para melhorar a resposta celular, e consequentemente o

processo de osseointegração (Borsari et al., 2005; Wennerberg and Albrektsson,

2009). Existem vários métodos de modificação de superfície de implantes, mas

comumente são divididos em dois grandes grupos, os métodos de adição,

Page 14: Cindy Goes Dodo - Unicamprepositorio.unicamp.br/bitstream/REPOSIP/304942/1/Dodo_CindyGoe… · CINDY GOES DODO O efeito de partículas de titânio na osseointegração. The effect

17

normalmente obtidos através de spray de plasma com partículas de titânio ou

hidroxiapatita, e os métodos de subtração, normalmente obtidas por laser ou ataque

ácido, a combinação dos dois métodos também é utilizada. A superfície rugosa

representa uma modificação micro ou nano morfológica estrutural que aumenta a área

de contato entre o osso vital e o implante, o que aumenta a estabilidade primária dos

implantes e a resistência ao torque de remoção, favorecendo a deposição óssea

quando comparada à superfície lisa (Carr et al., 1997; Sutter et al., 1988).

Entretanto, ao longo do tempo percebeu-se que durante o uso de implantes

ortopédicos, a texturização criada para aumentar a rugosidade de superfície pode ser

desgastada em micropartículas e nanopartículas de titânio (Zhang et al., 2011) que

são liberados na área periimplantar levando a uma reação inflamatória exacerbada

(Goodman et al., 2014; Wei et al., 2009). Essa reação pode ser ainda intensificada

caso haja presença de endotoxinas bacterianas provenientes do implante ou em sítio

cirúrgico contaminados (Bi et al., 2001; Meyer et al., 2006; Ragab et al., 1999).

O processo inflamatório relacionado à presença de partículas de titânio

liberadas durante o uso das próteses ortopédicas, exacerba a produção das citocinas

pró-inflamatórias, Interleucina 6 (IL-6), Fator de Necrose Tumoral Alpha (TNF-α),

Interleucina 1 Beta (IL1-β) que estão ligadas ao início do processo osteolítico (Shin et

al., 2012). Estas citocinas são produzidas por macrófagos após a fagocitose, que são

as primeiras células a interagir com as partículas liberadas, e essa produção

exacerbada de citocinas culmina em perda óssea ao redor do implante, e consequente

falha da prótese ortopédica (Obando-Pereda et al., 2014; Shin et al., 2012).

Na odontologia, os implantes dentários podem liberar micropartículas e

nanopartículas de titânio no tecido periimplantar durante a inserção no sítio ósseo

(Senna et al., 2015). Essas partículas são provenientes da quebra dos picos, criados

para o aumento da rugosidade de superfície, durante a inserção do implante. Outra

característica da liberação de partículas dos implantes dentários que difere dos

implantes ortopédicos, é o acúmulo na região cervical próximo as três primeiras roscas

do implante devido ao autorrosqueamento dos implantes (Mints et al., 2014; Senna et

Page 15: Cindy Goes Dodo - Unicamprepositorio.unicamp.br/bitstream/REPOSIP/304942/1/Dodo_CindyGoe… · CINDY GOES DODO O efeito de partículas de titânio na osseointegração. The effect

18

al., 2015). Análises histológicas da região periimplantar também mostraram a

presença das partículas após 6 meses da colocação do implante (Flatebo et al., 2011;

Olmedo et al., 2008).

Apesar da evidência de partículas de titânio no tecido periimplantar de

implantes dentários, o mecanismo e a influência dessas partículas de titânio na região

periimplantar oral ainda não foram avaliados. Devido as diferenças biológicas e

mecânicas dos implantes ortopédicos para os implantes dentais, muito ainda deve ser

investigado para saber qual o efeito da presença de partículas de titânio na região

periimplantar oral.

A região periimplantar oral possui uma microbiota natural, portanto a

presença de endotoxinas irá ocorrer mesmo que não haja presença de contaminação

do implante ou do sítio cirúrgico e como descrito no quarto parágrafo essa associação,

pode exacerbar a reação inflamatória (Bi et al., 2001; Meyer et al., 2006; Ragab et al.,

1999). Sabe-se que a microbiota periimplantar é semelhante a microbiota periodontal

pré-existente (Rutar et al., 2001), uma bactéria altamente patogênica e pouco virulenta

que é determinante para doenças periodontais a Porphyromonas gingivalis, pode ser

encontrada em regiões periimplantares (Lee et al., 1999; Leonhardt et al., 2003;

Mombelli et al., 1995; Rutar et al., 2001). Portanto é essencial a avaliação da

associação de micropartículas e nanopartículas de titânio a endotoxinas bacterianas

da cavidade oral, que podem levar a falha do tratamento (Lang et al., 2011).

O processo de saucerização óssea também é uma característica específica

dos implantes orais que é multifatorial e as causas e o mecanismos de reabsorção

continuam em discussão. A literatura descreve como causas traumas cirúrgicos,

sobrecarga oclusal, periimplantite, micro espaços entre implante e osso, adaptação

do epitélio juncional após a perda do espaço biológico e o módulo de crista do

implante(Albrektsson et al., 2012; Cochran et al., 2009) , a presença das partículas de

titânio poderia contribuir para a perda óssea neste processo sendo um fator somatória

as causas já descritas.

Page 16: Cindy Goes Dodo - Unicamprepositorio.unicamp.br/bitstream/REPOSIP/304942/1/Dodo_CindyGoe… · CINDY GOES DODO O efeito de partículas de titânio na osseointegração. The effect

19

No intuito de investigar a existência e o mecanismo e de um processo

osteolítico na presença das partículas de titânio na região cervical do implante dental,

pode-se também analisar os fatores relacionados ao processo osteogênico. Se

observarmos um gene como RUNX-2 (runt-related transcription factor 2) um precursor

osteoblástico em que sua expressão está diretamente ligada a expressão dos genes

relacionados a formação da matriz óssea como Ocitocina (OCN), Osteopontina

(OPN), Colágeno tipo 1 (ColA1), Sialoproteína óssea (BSP), Fosfatase alcalina (ALP),

deduziremos que existe uma expressão gênica que poderá levar a formação óssea

(Kirkham et al., 2007). A Osteopontina além de ser um gene da matriz óssea, sua

expressão pode estar relacionada com a atividade osteoclástica. Outros genes como

Osterix (OSX) ligado a ossificação, Proteína morfogenética 2 (BMP-2) que é um fator

de crescimento ósseo e o paratormônio (PTH) que está associado a liberação de íon

cálcio do osso, são importantes marcadores da atividade óssea (Granchi et al., 2010;

Gyurko et al., 2005).

Sendo assim, a avaliação da associação de micropartículas e

nanopartículas de titânio, liberados a partir de implantes dentários, com endotoxinas

presentes na área periimplantar da cavidade oral como LPS de Porphyromonas

gingivalis (Lang et al., 2011) sobre a produção de citocinas pró-inflamatórias

relacionadas com a o processo de osteólise, se faz necessária. Assim como, é

importante avaliar a influência de partículas de titânio no processo de reabsorção

óssea na região cervical de implantes dentários, uma vez que a presença de partículas

de titânio pode contribuir para o processo de saucerização óssea culminando na falha

do selamento da região periimplantar.

Portanto um estudo in vitro (Artigo 1) foi proposto para avaliar o

comportamento dos macrófagos humanos na presença de micropartículas e

nanopartículas de titânio associada com LPS de Porphyromonas Gingivalis, sobre a

expressão gênica e produção de citocinas pró-inflamatórias relacionadas a osteólise

e um estudo in vivo (Estudo 2) foi proposto para avaliar a reação do osso peri-

Page 17: Cindy Goes Dodo - Unicamprepositorio.unicamp.br/bitstream/REPOSIP/304942/1/Dodo_CindyGoe… · CINDY GOES DODO O efeito de partículas de titânio na osseointegração. The effect

20

implantar e a expressão de genes relacionados a osteogênese nos estágios iniciais

da osseointegração, na presença de micropartículas de titânio.

Page 18: Cindy Goes Dodo - Unicamprepositorio.unicamp.br/bitstream/REPOSIP/304942/1/Dodo_CindyGoe… · CINDY GOES DODO O efeito de partículas de titânio na osseointegração. The effect

21

2 ARTIGOS

2.1 Pro-inflammatory analysis of human macrophage in contact with titanium micro/nanoparticles and Porphyromonas gingivalis

Cindy Goes Dodo

Luiz Meirelles

Alejandro Ayres-Reyes

Karina Gonzalez Silvério Ruiz

Jacqueline Abranches

Altair Antoninha Del Bel Cury*

* Corresponding author:

Altair Antoninha Del Bel Cury

Department of Prosthodontics and Periodontology, Piracicaba Dental

School, University of Campinas.

Avenida Limeira, 901. Piracicaba, São Paulo, Brazil. 13414-903.

Phone: +55 19 21065294; Fax +55 19 2106-5211;

E-mail: [email protected]

Page 19: Cindy Goes Dodo - Unicamprepositorio.unicamp.br/bitstream/REPOSIP/304942/1/Dodo_CindyGoe… · CINDY GOES DODO O efeito de partículas de titânio na osseointegração. The effect

22

Abstract Titanium dental implant insertion can release titanium particles in the

periimplant region that can overstimulate inflammation leading to osteolysis, the

association with bacterium and can exacerbate inflammatory reaction. A high invasive

bacterium as Porphytomonas gingivalis, is present in the periimplant area and the

association of this bacterium and titanium particles remains unkown. This study

evaluated the behavior of human macrophages in contact with micro and nanoparticles

of titanium associated with Lipopolysaccharide (LPS) PG. THP-1 cell were

differentiated to macrophages and were treated for 12h, 24h, and 48h following 6

groups: Control(C), LPS PG (L); Microparticles (M); Nanoparticles (N); LPS PG and

microparticles (LM); LPS PG and nanoparticles (LN). The pro-inflammatory cytokines

TNF-α, IL1-β, IL-6 were analyzed regarding cell viability, morphology, mRNA

expression (RT-PCR) and protein production (Elisa). For statistics Anova two-way

followed by Tukey’s test was used (p<0.05). After treatment cells presented similar

viability and morphology demostranting that the presence of treatments were not

causing cell death. Gene expression was higher for TNF-α and IL1-β after 12h and IL-

6 after 24h, results. Cytokine production regarding time was an ascending curve for

TNF-α with the peak at 48h and IL1-β and IL-6 had a straight line between time besides

IL-6 at 48h for N group. Conclusively, these results suggest that macrophages are

more affected by nanoparticles and LPS PG did not increase the pro-inflammatory

reaction.

Keywords: Osteolysis, Dental implant, Cytokines, Bone resorption, Titanium

Page 20: Cindy Goes Dodo - Unicamprepositorio.unicamp.br/bitstream/REPOSIP/304942/1/Dodo_CindyGoe… · CINDY GOES DODO O efeito de partículas de titânio na osseointegração. The effect

23

Introduction Titanium implants are the most used for dental rehabilitation and the surfaces

properties have been modified to enhance cellular response, usually by increasing the

surface roughness [1, 2]. The modifications in the surfaces are an attempt to increase

the primary stability and improve the process of osseointegration [1, 3]. Previous

studies from our group demonstrated that during insertion into bone the peaks created

to increase roughness are prone to break, culminating in the release of titanium

microparticles and nanoparticles, especially in the cortical region near the neck of the

implant [4, 5]. Also, histological analyses showed that titanium particles can be trapped

in peri-implant tissue even after 6 months of implant placement [6, 7].

Whereas the presence of titanium particles shed from rough titanium surfaces

during dental implant insertion in the cortical region was proved, the consequences

related to the presence of this shed particles in the dental peri-implant tissue were

poorly investigated. Despite, orthopedic studies, showed that the presence of titanium

particles from wear of limb prosthesis could overexpress pro-inflammatory cytokines

as IL-6, TNF-α, IL1-β, that are related to the osteolysis process, culminating in bone

loss around the implant and prosthesis failure [8, 9]. Furthermore, the orthopedic

studies showed that the presence of bacterium endotoxins in the implant could

intensify the inflammatory reaction, increasing bone loss [10-12].

In the peri-implant region there is a natural microbiota usually similar to the oral

cavity before implant installation [13]. Porphyromonas gingivalis is a key pathogen for

periodontal diseases [14] and is a bacterium reported to be presented in the dental

peri-implant region after dental implant installation [13, 15-17]. Thus, it is important to

assess the influence of microparticles and nanoparticles of titanium released from

dental implants surfaces during insertion, associated with endotoxins from bacteria

present in the peri-implant area. Hence, an in vitro study was proposed to evaluate the

pro-inflammatory reaction of macrophages, the first cell linage interacting with a foreign

body, in the presence of microparticles and nanoparticles of titanium associated with

Page 21: Cindy Goes Dodo - Unicamprepositorio.unicamp.br/bitstream/REPOSIP/304942/1/Dodo_CindyGoe… · CINDY GOES DODO O efeito de partículas de titânio na osseointegração. The effect

24

Lipopolysaccharide from Porphyromonas gingivalis [18], regarding gene expression

and protein production of pro-inflammatory cytokines related to osteolysis process.

2- Materials and Methods 2.1 Titanium particles

Microparticles of titanium powder CAS 7740-32-6 (<20 micron, 93%, Alfa

Aesar, Ward Hill, MA, USA) and Nanoparticles Titanium (IV) oxide CAS 13463-67-7

(21 nm, Sigma Aldrich, St Louis, MO, USA) were used in this study. The particles were

weighted and separated in 15 mL tubes (Fischer Scientific, Waltham, Massachusetts,

USA) containing 25 mg each. A cleaning procedure was necessary to certificate that

the particles were not contaminated with amounts of endotoxin (10-20 units/ml) as

reported previously [10, 12, 19]. The particles were cleaned using nitric acid 25% for 2

h followed by 3 washes in Phosphate-buffered saline (PBS) (Invitrogen, Waltham,

Massachusetts, USA) for 5 minutes each time and placed in 95% ethanol with 0.1N of

NAOH for 24h, followed by 3 washes in PBS [10, 20]. After the cleaning procedure the

presence of endotoxins was measured using Limulus Amebocyte Lysate Chromogenic

Endotoxin Quantification Kit (Thermo Fisher Scientific, Grand Island, NY, USA)

following the manufacture protocol. The detection measured was <0.01endotoxin

units/mL, confirming the effectiveness of the cleaning procedure [19]. The particles

were kept in PBS 25 mg/mL at 4°C [21, 22] and the solution was agitated for 20 min

prior each usage [23].

2.2 Cell Culture The human monocyte THP-1 cells (5x105 cells/well) were placed in a 6 well

plate with RPMI-1640 medium, supplemented with 10% fetal bovine serum and 1%

antibiotics penicillin-streptomycin (Invitrogen, Carlsbad, CA, USA) in a incubator under

5% atmosphere CO2/95% air at 37 °C. The cells were differentiated to macrophages

using 125ng/well for 48h of phorbol 12 – myristate 13- acetate (PMA) (Sigma Aldrich,

St. Louis, MO, USA) [24]. The wells were washed 3 times with PBS and treated

Page 22: Cindy Goes Dodo - Unicamprepositorio.unicamp.br/bitstream/REPOSIP/304942/1/Dodo_CindyGoe… · CINDY GOES DODO O efeito de partículas de titânio na osseointegração. The effect

25

following 6 experimental groups: no treatment, Control(C); 1 μg/mL

Lipopolysaccharide from Porphyromonas gingivalis (L) [8, 25]; 50 ng/mL of Titanium

microparticles (M) –; 50ng/mL Titanium nanoparticles (N); 1 μg/mL of

Lipopolysaccharide from Porphyromonas gingivalis plus 50 ng/mL microparticles (LM);

1 μg/mL of Lipopolysaccharide from Porphyromonas gingivalis plus 50 ng/mL of

titanium nanoparticles (LN). The treatments were diluted in RPMI-1640 medium and 5

mL was placed in each well of a 6 well/plate [20, 26].

2.3 Cell viability in the presence of titanium particles The cell viability analyses were performed to evaluate whether the

treatments proposed were leading to cell death. After treatments for 12h, 24h and 48h

the viability was verified in a spectrophotometer (Multiskan Spectrum Microplate

Spectrophotometer, Thermo Fisher Scientific Inc., MA, USA) at 490 nm using CellTiter

96® Aqueous One Solution Cell Proliferation Assay with tetrazolium compound [3-(4,5-

dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium,

inner salt; MTS (Promega, WI, USA) following the manufacturer instructions [3]. Also

the cells were treated following the experimental groups on polysine-coated glass

cover slips (ThemoScientific Waltham, Massachusetts, USA) and prepared for

spectrometry electron microscopy (SEM) analysis with 5% Karnovisk overnight, and

dehydrated in successive concentrations of ethanol (50%, 70%, 95% and twice at

100%) with 15 minutes incubation time between each step. The samples were then

critical point-dried using a critical point dryer (Critical Point Dryer, Seevac Inc, Florida,

USA). Each specimen was mounted on a SEM stub and sputter-coated with a

conductive layer of AuPd. The samples were imaged using a JEOL JSM 5600 PV SEM

(Akishima, Tokyo, Japan).

2.4 Gene expression analysis After the incubation period following the experimental groups, the cells were

harvested after 12 h, 24 h, and 48 h. Also a baseline group (0 h) was prepared for gene

Page 23: Cindy Goes Dodo - Unicamprepositorio.unicamp.br/bitstream/REPOSIP/304942/1/Dodo_CindyGoe… · CINDY GOES DODO O efeito de partículas de titânio na osseointegração. The effect

26

expression data analysis. Total RNA was extracted using TRIzol Reagent (Invitrogen,

Carlsbad, CA, USA) according to the recommended protocol and the quantity and the

quality of RNA obtained were analyzed using Nanodrop (ND-1000 Spectrophotometer

Wilmington, DE, USA) and an agarose 0.8% gel electrophoresis (40 min, 80 mA). Total

RNA extracted was cleaned using DNA-free™ DNA Removal Kit (Ambion, Life

Technologies, Carlsbad, California, USA) and purified using RNeasy Mini Kit (Qiagen,

Valencia, CA, USA). The purified RNA (0.5μg of RNA per reaction) was converted to

cDNA in a reverse transcriptase reaction using a PrimeScrip RT reagent kit (Qiagen,

Valencia, CA, USA). RT-PCR (100ng of cDNA per reaction) was carried out using the

PerfeCta SYBR Green FastMix Kit (Quanta Biosciences,Gaithersburg, Maryland,

USA) and StepOnePlus real-time PCR system(Life Technologies) following 40 cycles

of 95oC for 10s, and 60oC for 30s and 95oC for 10s. The comparative quantification

algorithm (ΔΔCt) method was used and the expression level of the internal control

gene, Glyceraldehyde 3-phosphate dehydrogenase (GAPDH) was used to normalize

the data. Experiments were performed in triplicate. The gene specific primers used in

this study are described in Table 1 [20].

Table 1. Gene sequence for Real time-PCR

Gene Seq 5’to 3 GAPDH F: CGAGATCCCTCCAAAATCAA R:TTCACACCCATGACGAACAT IL-1β F:GGACAAGCTGAGGAAGATGC R:TCGTTATCCCATGTGTCGAA TNF-α F: AGCCCATGTTGTAGCAAACC R:TGAGGTACAGGCCCTCTGAT IL-6 F: CACAGACAGCCACTCACCTC R:TTTTCTGCCAGTGCCTCTTT

2.5 Quantification of cytokine production The cell-free supernatant was collected from three independent experiments

and the extracellular levels of cytokines TNF- α, IL -1β and IL- 6 was measured using

the Single-Analyte ELISArray Kits (Qiagen, Valencia, CA, USA), following the

manufacture protocol. The absorbance was on a spectrophotometer (Multiskan

Page 24: Cindy Goes Dodo - Unicamprepositorio.unicamp.br/bitstream/REPOSIP/304942/1/Dodo_CindyGoe… · CINDY GOES DODO O efeito de partículas de titânio na osseointegração. The effect

27

Spectrum Microplate Spectrophotometer, Thermo Fisher Scientific Inc., MA, USA), and

concentrations ere calculated according to the standard curve of each cytokine.

2.6 Statistical Analyses The results were analyzed by analysis of variance followed by Tukey’s test

within the level of significance at 5%. The data analysis software used in this study

was SAS 7.0 (SAS, Cary, North Carolina, USA)

3. Results 3.1 Cells viability and expression of inflammatory cytokines

We observed that the treatments proposed did not affect cell viability. The

results showed similar results among groups after cell viability analysis p<0.05 (Fig1)

and similar morphology after SEM analysis (Fig. 2).

Figure 1. Cell viability absorbance percentage compared to control after 12h, 24h and 48h (p>0.05). THP-1 cells

were treated with 1 μg/mL of LPS from P. gengivalis (LPS), Titanium microparticles 50 ng/mL (M), Titanium Nanoparticles 50

ng/mL (N), LPS P. gingivalis 1 μg/mL with 50 ng/mL of titanium microparticles (LM) and LPS P. gengivalis 1 μg/mL with 50 ng/mL

of titanium nanoparticles (LN).

Page 25: Cindy Goes Dodo - Unicamprepositorio.unicamp.br/bitstream/REPOSIP/304942/1/Dodo_CindyGoe… · CINDY GOES DODO O efeito de partículas de titânio na osseointegração. The effect

28

Figure 2. SEM of THP-1 cells that were after treated 12h, 24h and 48h with 1 μg/mL of LPS from P. gengivalis

(LPS), Titanium microparticles 50 ng/mL (M), Titanium Nanoparticles 50 ng/mL (N), LPS P. gingivalis 1 μg/mL with 50 ng/mL of

titanium microparticles (LM) and LPS P. gengivalis 1 μg/mL with 50 ng/mL of titanium nanoparticles (LN).

Our findings, related to gene expression, revealed that the peak of expression

for TNF-α and IL-1β occurred after 12 h hours and for IL-6 was after 24 h (Fig. 3).

When analyzing each gene by time, TNF- α at 12 h had the highest fold increased for

N and LN groups (8,39 fold and 6,60 fold), at 24 h N, M, LM and LN groups had similar

expression, and at 48 h the highest fold increased was once more for N and LN (3,32

fold 2,86). Regarding IL1-β, the highest fold increased was at 12 h for N group 11,65

fold, at 24 h for N and LN (5,09 fold and 5,99 fold) and at 48 h for N group 3,14 fold.

IL-6 presented at 12 h the highest fold increased for N group 39,56 fold, 24 h for N and

LN groups (78,09 fold and 64,78 fold) and at 48 h for N and LN groups (7,44 fold and

7,31 fold).

Generally, after the treatments, THP-1 cells had the higher expression of pro-

inflammatory cytokines in the presence of titanium nanoparticles. Another general

expression behavior was the lower fold increased in presence of LPS PG, an example

was the LN group that the genes IL-6 at 12h and IL1- β at 12h and 48h IL-B the fold

increased was lower than the N group in the same time points. Regarding the groups

treated with titanium microparticles and interestingly late expression of TNF-α was

observed when cells were exposed to microparticles in comparison to nanoparticles.

Page 26: Cindy Goes Dodo - Unicamprepositorio.unicamp.br/bitstream/REPOSIP/304942/1/Dodo_CindyGoe… · CINDY GOES DODO O efeito de partículas de titânio na osseointegração. The effect

29

The group LM that was associated with LPS PG had the same behavior as the group

treated with titanium microparticles, besides the gene TNF-α at 12h, the group LM

presented a significant gene expression.

Page 27: Cindy Goes Dodo - Unicamprepositorio.unicamp.br/bitstream/REPOSIP/304942/1/Dodo_CindyGoe… · CINDY GOES DODO O efeito de partículas de titânio na osseointegração. The effect

30

N

Page 28: Cindy Goes Dodo - Unicamprepositorio.unicamp.br/bitstream/REPOSIP/304942/1/Dodo_CindyGoe… · CINDY GOES DODO O efeito de partículas de titânio na osseointegração. The effect

31

Figure 3. Gene expression analyses of pro-inflammatory cytokines related to osteolysis.Fold increased of TNF-

α,IL1-β and IL-6 was compared to the housekeeping gene (GAPDH) and control of each group (ΔΔCt). THP-1 cells were treated

with 1 μg/mL of LPS from P. gengivalis (LPS), Titanium microparticles 50 ng/mL (M), Titanium Nanoparticles 50 ng/mL (N), LPS

P. gingivalis 1 μg/mL with 50 ng/mL of titanium microparticles (LM) and LPS P. gengivalis 1 μg/mL with 50 ng/mL of titanium

nanoparticles (LN). * Significant differences from all groups from the same cytokine (p<0.05) and **Significant differences from all

groups from the same cytokine (p<0.05). Data expressed as the mean ± SD of experiments made in quadruplicate.

3.2 Cytokine Production The cytokine production generally was an ascending curve for TNF- α and the

peak occurred after 48 h. For IL-1 β and IL-6 the production was almost a straight line,

with the exception for the production of IL-6 for N group that had higher production at

48h.

The average high expression of cytokine was to IL1-β followed by TNF-α and

IL1-6 (Fig 4). The results showed that TNF-α production was more pronounced at 48h

for N group (2019.1 pg/ml) followed by the groups statically equivalent M at 24h (605

pg/ml), 48h (983 pg/ml) and group LN 48 h (958 pg/ml). The results showed that IL1-β

presented the highest protein production but the production of all groups was

statistically equivalent. For IL-6 the highest protein production was also for the group

treated with nanoparticles at 48h (1301,82pg/ml). Overall, the groups treated with

titanium micro and nanoparticles presented the highest protein production. The groups

treated with titanium particles in association with LPS PG presented similar or less pro-

inflammatory production than the groups treated just with titanium particles.

Page 29: Cindy Goes Dodo - Unicamprepositorio.unicamp.br/bitstream/REPOSIP/304942/1/Dodo_CindyGoe… · CINDY GOES DODO O efeito de partículas de titânio na osseointegração. The effect

32

Figure 4. Pro-inflammatory cytokines expression of THP-1 cells treated after 12h, 24 h and 48 h with 1 μg/mL of

LPS from P. gengivalis (LPS), Titanium microparticles 50 ng/mL (M), Titanium Nanoparticles 50 ng/m (N), LPS P. gingivalis 1

μg/mL with 50 ng/mL of titanium microparticles (LM) and LPS P. gengivalis 1 μg/mL with 50 ng/mL of titanium nanoparticles (LN).

* Significant differences from all groups from the same cytokine (p<0.05) and **Significant differences from all groups from the

same cytokine (p<0.01). Data expressed as the mean ± SD of experiments made in triplicate.

Page 30: Cindy Goes Dodo - Unicamprepositorio.unicamp.br/bitstream/REPOSIP/304942/1/Dodo_CindyGoe… · CINDY GOES DODO O efeito de partículas de titânio na osseointegração. The effect

33

Discussion The presence of titanium particles in the dental peri-implant region can

be an obstacle to bone regeneration that can lead to marginal bone loss. The

orthopedic literature showed the influence of titanium wear particles in the osteolytic

process that cause implant failure and can be exacerbated in the presence of bacteria.

In this study we aimed to analyze the behavior of human macrophages in the presence

of titanium particles shed during insertion of dental implants into bone associated with

a common pathogen in the periimplant region, P. gingivalis [13, 17].

The cells viability results demonstrated that the treatments were not causing cell

death and the SEM results showed similar morphology among groups. Although it was

demonstrated similar cell viability between groups and cell morphology titanium

particles and LPS from P. gingivalis could affect pro-inflammatory cytokines genes

expression and protein production [3, 27]. Gene expression results showed that TNF-

α and IL1-β had the highest fold increased after 12h and IL-6 after 24h, following

previous results that showed the inflammation process related to the presence of

titanium particles in orthopedics [8, 28]. The groups with nanoparticles of titanium

presented the highest fold increased for all genes showing a possible relation with the

particle size [3]. Titanium microparticles affect gene expression although was less than

titanium nanoparticles, this study used the same concentration of particles as

nanoparticles were smaller, to achieve the same weight more particles were needed

the result could be related to a dose-dependency not only about particle size [23, 29].

Protein production was higher for IL1-β in all time points and groups analyzed,

this cytokine have a higher production compared to TNF-α and IL-6 [8]. However, the

analysis of the protein production behavior is more significant than the values of

production [9, 30]. IL-1β is the cytokine expressed to start the osteolytic process and

plays an important role to TNF-α expression that modulates RANK-L production,

leading to bone resorption. Therefore we could observed that the production of TNF-α

was an ascending curve regarding time and probably if this study analyzed in a later

time point the curve would still ascending [31]. After the production of IL1-β and TNF-

Page 31: Cindy Goes Dodo - Unicamprepositorio.unicamp.br/bitstream/REPOSIP/304942/1/Dodo_CindyGoe… · CINDY GOES DODO O efeito de partículas de titânio na osseointegração. The effect

34

α, IL-6 is produced and this cytokine is related to the recruitment and activation of

osteoclasts, which resorb bone [9, 32]. For IL-6 the production pattern was a straight

line besides the group treated with titanium nanoparticles that showed higher

production of cytokines after 48h, suggesting that nanoparticles could lead to more

bone resorption [32, 33].

We could observe that mRNA and cytokine expression did not present a parallel

behavior. For example, TNF-α was expressed at 12h for N, LM, and LN groups and

the protein production did not occur at 12h or even after 24h. Another finding was IL-6

that had the highest fold increased and IL1- β produced more proteins. Others studies

in the orthopedic literature described similar results as ours [8, 12, 19, 34], but the

reason regarding this findings are unknown. A possibly explanation is that this

discrepancy in mRNA expression and protein production can be related to a post-

transcriptional processing or autocrine mechanisms to prevent an over-inflammatory

reaction that can be harmful for the system[8].

Moreover others studies showed that titanium particles contribute to

inflammatory response without the presence of a pathogen, but the presence of a

endotoxins can exacerbate inflammatory reaction [12]. In this study the association of

titanium particles with a pathogen from the oral cavity, LPS from P. gingivalis was

analyzed and did not increase gene expression or protein production of pro-

inflammatory cytokines when associated with titanium micro and nanoparticles. LPS

from P. gingivalis is reported not to be as others Gram-negative bacterium, when

inducing pro-inflammatory cytokines in several types of cells including

monocyte/macrophage cell type [24, 35, 36]. This is characteristic of P. gingivalis that

helps the bacteria to invasion, without alarming the host immune system [37]. Another

explanation regarding the lower expression and production of the pro- inflammatory

cytokines in the presence of LPS PG could be related to the concentration used in this

study. Previous studies using the same commercially LPS had similar results with

concentrations around 1 μl/ml [38-40], and only higher concentrations around 10 μl/ml

Page 32: Cindy Goes Dodo - Unicamprepositorio.unicamp.br/bitstream/REPOSIP/304942/1/Dodo_CindyGoe… · CINDY GOES DODO O efeito de partículas de titânio na osseointegração. The effect

35

[41] showed more effect in cytokine production but for human periodontal ligament

stem cells, this commercial LPS PG seems to have less potency than a LPS PG

extracted after culturing PG. This could be related to the cell linage of Porphyromonas

gingivalis [42] or to the procedure used to extract LPS [43], a comparative evaluation

is needed to prove the differences between LPS.

In our results we could observe that the presence of titanium particles can affect

THP-1 cells regarding gene expression and protein production of pro-inflammatory

cytokines related to the osteolytic process and groups treated with titanium

nanoparticles had more effect increasing gene expression and protein production.

Moreover, investigations must be done regarding the effect of titanium particles in the

process of marginal bone break down in dental implants in the early stages of

osseointegration. Titanium micro and nanoparticles could have a potential contribution

in the bone resorption process leading marginal bone loss.

Conclusion The presence of titanium particles stimulates the expression and production of

pro-inflammatory cytokines TNF- α, IL -1β and IL- 6 that are related to the osteolysis

process. Nanoparticles of titanium affect more the pro-inflammatory reaction. The

association with LPS from P. gingivalis did not increased gene expression of pro-

inflammatory genes and produced less pro-inflammatory cytokine compared to the

groups treated with microparticles and nanoparticles of titanium.

Acknowledgments

The authors declare no potential conflicts of interest with respect to the

authorship and/or publication of this study.

We gratefully acknowledge Dr. Jose Lemos for the support during the

development of this study. We also thank Dr. Irlan Almeida, Dr. Jessica K. Kajfasz, Dr.

Plinio Senna and James H. Miller for the critical advices. We acknowledge the São

Paulo Research Foundation for granting scholarships FAPESP# 2013/19791-8 and

Page 33: Cindy Goes Dodo - Unicamprepositorio.unicamp.br/bitstream/REPOSIP/304942/1/Dodo_CindyGoe… · CINDY GOES DODO O efeito de partículas de titânio na osseointegração. The effect

36

FAPESP#2014/10085-6 for the author Dr. Cindy Dodo during the development of this

study.

Refences [1]BorsariV,GiavaresiG,FiniM,TorricelliP,SalitoA,ChiesaR,etal.Physical

characterization of different-roughness titanium surfaces, with and without

hydroxyapatite coating, and their effect on human osteoblast-like cells. Journal of

biomedicalmaterialsresearchPartB,Appliedbiomaterials.2005;75:359-68.

[2]WennerbergA,AlbrektssonT.Effectsoftitaniumsurfacetopographyon

bone integration: a systematic review. Clinical oral implants research. 2009;20 Suppl

4:172-84.

[3]ZhangY,YuW,JiangX,LvK,SunS,ZhangF.Analysisofthecytotoxicityof

differentiallysizedtitaniumdioxidenanoparticlesinmurineMC3T3-E1preosteoblasts.

JournalofmaterialsscienceMaterialsinmedicine.2011;22:1933-45.

[4]SennaP,AntoninhaDelBelCuryA,KatesS,MeirellesL.SurfaceDamageon

DentalImplantswithReleaseofLooseParticlesafterInsertionintoBone.Clinicalimplant

dentistryandrelatedresearch.2015;17:681-92.

[5]MintsD,EliasC,FunkenbuschP,MeirellesL.Integrityofimplantsurface

modificationsafterinsertion.TheInternationaljournaloforal&maxillofacialimplants.

2014;29:97-104.

[6] FlateboRS,Hol PJ, LeknesKN,Kosler J, Lie SA, GjerdetNR.Mapping of

titanium particles in peri-implant oral mucosa by laser ablation inductively coupled

plasmamassspectrometryandhigh-resolutionopticaldarkfieldmicroscopy.Journalof

oralpathology&medicine :officialpublicationof theInternationalAssociationofOral

PathologistsandtheAmericanAcademyofOralPathology.2011;40:412-20.

[7]OlmedoDG,TasatDR,EvelsonP,GuglielmottiMB,CabriniRL.Biological

responseoftissueswithmacrophagicactivitytotitaniumdioxide.Journalofbiomedical

materialsresearchPartA.2008;84:1087-93.

Page 34: Cindy Goes Dodo - Unicamprepositorio.unicamp.br/bitstream/REPOSIP/304942/1/Dodo_CindyGoe… · CINDY GOES DODO O efeito de partículas de titânio na osseointegração. The effect

37

[8]Obando-PeredaGA,FischerL,Stach-MachadoDR.Titaniumandzirconia

particle-induced pro-inflammatory gene expression in cultured macrophages and

osteolysis,inflammatoryhyperalgesiaandedemainvivo.Lifesciences.2014;97:96-106.

[9] Souza PP, Lerner UH. The role of cytokines in inflammatory bone loss.

ImmunolInvest.2013;42:555-622.

[10]RagabAA,VanDeMotterR,LavishSA,GoldbergVM,NinomiyaJT,Carlin

CR,etal.Measurementandremovalofadherentendotoxinfromtitaniumparticlesand

implantsurfaces.Journaloforthopaedicresearch:officialpublicationoftheOrthopaedic

ResearchSociety.1999;17:803-9.

[11]MeyerU,BuhnerM,BuchterA,Kruse-LoslerB,StammT,WiesmannHP.

Fastelementmappingoftitaniumweararoundimplantsofdifferentsurfacestructures.

Clinicaloralimplantsresearch.2006;17:206-11.

[12]BiY,VanDeMotterRR,RagabAA,GoldbergVM,AndersonJM,Greenfield

EM.Titaniumparticlesstimulateboneresorptionbyinducingdifferentiationofmurine

osteoclasts.TheJournalofboneandjointsurgeryAmericanvolume.2001;83-A:501-8.

[13] Rutar A, Lang NP, Buser D, Burgin W, Mombelli A. Retrospective

assessmentofclinicalandmicrobiologicalfactorsaffectingperiimplanttissueconditions.

Clinicaloralimplantsresearch.2001;12:189-95.

[14]O'Brien-SimpsonNM,BurgessK, BrammarGC,Darby IB,ReynoldsEC.

Developmentandevaluationofasaliva-basedchair-sidediagnosticforthedetectionof

Porphyromonasgingivalis.Journaloforalmicrobiology.2015;7:29129.

[15] Leonhardt A, Bergstrom C, Lekholm U. Microbiologic diagnostics at

titaniumimplants.Clinicalimplantdentistryandrelatedresearch.2003;5:226-32.

[16] Lee KH, Maiden MF, Tanner AC, Weber HP. Microbiota of successful

osseointegrateddentalimplants.Journalofperiodontology.1999;70:131-8.

[17]MombelliA,MarxerM,GaberthuelT,GrunderU,LangNP.Themicrobiota

ofosseointegratedimplantsinpatientswithahistoryofperiodontaldisease.Journalof

clinicalperiodontology.1995;22:124-30.

Page 35: Cindy Goes Dodo - Unicamprepositorio.unicamp.br/bitstream/REPOSIP/304942/1/Dodo_CindyGoe… · CINDY GOES DODO O efeito de partículas de titânio na osseointegração. The effect

38

[18]LangNP,BerglundhT,WorkingGroup4ofSeventhEuropeanWorkshop

on P. Periimplant diseases: where are we now?--Consensus of the Seventh European

WorkshoponPeriodontology.Journalofclinicalperiodontology.2011;38Suppl11:178-

81.

[19]SchwabLP,XingZ,HastyKA,SmithRA.Titaniumparticlesandsurface-

bound LPS activate different pathways in IC-21 macrophages. Journal of biomedical

materialsresearchPartB,Appliedbiomaterials.2006;79:66-73.

[20]JinS,ParkJY,HongJM,KimTH,ShinHI,ParkEK,etal.Inhibitoryeffectof

(-)-epigallocatechingallateon titaniumparticle-inducedTNF-alphareleaseand invivo

osteolysis.Experimental&molecularmedicine.2011;43:411-8.

[21]HanSG,NewsomeB,HennigB.Titaniumdioxidenanoparticlesincrease

inflammatoryresponsesinvascularendothelialcells.Toxicology.2013;306:1-8.

[22]Montiel-DavalosA,Ventura-GallegosJL,Alfaro-MorenoE,Soria-CastroE,

Garcia-LatorreE,Cabanas-MorenoJG,etal.TiO(2)nanoparticlesinducedysfunctionand

activationofhumanendothelialcells.Chemicalresearchintoxicology.2012;25:920-30.

[23]ZhangY,YuS,XiaoJ,HouC,LiZ,ZhangZ,etal.Wearparticlespromote

endotoxin tolerance in macrophages by inducing interleukin-1 receptor-associated

kinase-Mexpression.JournalofbiomedicalmaterialsresearchPartA.2013;101:733-9.

[24]DiyaZ,LiliC, ShenglaiL,ZhiyuanG, JieY.Lipopolysaccharide (LPS)of

Porphyromonas gingivalis induces IL-1beta, TNF-alpha and IL-6 production by THP-1

cellsinawaydifferentfromthatofEscherichiacoliLPS.Innateimmunity.2008;14:99-

107.

[25]ChenLL,Yan J.Porphyromonasgingivalis lipopolysaccharideactivated

bone resorption of osteoclasts by inducing IL-1, TNF, and PGE. Acta Pharmacol Sin.

2001;22:614-8.

[26]ShinDK,KimMH,LeeSH,KimTH,KimSY.Inhibitoryeffectsofluteolinon

titaniumparticle-inducedosteolysisinamousemodel.Actabiomaterialia.2012;8:3524-

31.

Page 36: Cindy Goes Dodo - Unicamprepositorio.unicamp.br/bitstream/REPOSIP/304942/1/Dodo_CindyGoe… · CINDY GOES DODO O efeito de partículas de titânio na osseointegração. The effect

39

[27] Irshad M, Scheres N, Crielaard W, Loos BG, Wismeijer D, Laine ML.

Influenceoftitaniumoninvitrofibroblast-Porphyromonasgingivalisinteractioninperi-

implantitis.Journalofclinicalperiodontology.2013;40:841-9.

[28]CachinhoSC,PuF,Hunt JA.Cytokinesecretion fromhumanperipheral

bloodmononuclear cells cultured in vitro withmetal particles. Journal of biomedical

materialsresearchPartA.2013;101:1201-9.

[29]GoodmanSB,KonttinenYT,TakagiM.Jointreplacementsurgeryandthe

innateimmunesystem.Journaloflong-termeffectsofmedicalimplants.2014;24:253-7.

[30] Amarasekara DS, Yu J, Rho J. Bone Loss Triggered by the Cytokine

NetworkinInflammatoryAutoimmuneDiseases.JImmunolRes.2015;2015:832127.

[31]Wei S, KitauraH, ZhouP, Ross FP, TeitelbaumSL. IL-1mediatesTNF-

inducedosteoclastogenesis.TheJournalofclinicalinvestigation.2005;115:282-90.

[32] Darowish M, Rahman R, Li P, Bukata SV, Gelinas J, Huang W, et al.

Reduction of particle-induced osteolysis by interleukin-6 involves anti-inflammatory

effectandinhibitionofearlyosteoclastprecursordifferentiation.Bone.2009;45:661-8.

[33] Schwarz EM, Benz EB, Lu AP, Goater JJ, Mollano AV, Rosier RN, et al.

Quantitativesmall-animalsurrogatetoevaluatedrugefficacyinpreventingweardebris-

induced osteolysis. Journal of orthopaedic research : official publication of the

OrthopaedicResearchSociety.2000;18:849-55.

[34]TrindadeMC,LindM,SunD,SchurmanDJ,GoodmanSB,SmithRL.Invitro

reaction to orthopaedic biomaterials by macrophages and lymphocytes isolated from

patientsundergoingrevisionsurgery.Biomaterials.2001;22:253-9.

[35] Lu J, Yang Z, Jiang J,Wang Z, Zhu P. Regulative effect of P38MAPK on

release of TNFalpha andNO fromalveolarmacrophages under endotoxin stimulation.

Chinese journal of traumatology = Zhonghua chuang shang za zhi / Chinese Medical

Association.2001;4:75-7.

[36]OgawaT,UchidaH.DifferentialinductionofIL-1betaandIL-6production

by the nontoxic lipid A from Porphyromonas gingivalis in comparisonwith synthetic

Page 37: Cindy Goes Dodo - Unicamprepositorio.unicamp.br/bitstream/REPOSIP/304942/1/Dodo_CindyGoe… · CINDY GOES DODO O efeito de partículas de titânio na osseointegração. The effect

40

EscherichiacolilipidAinhumanperipheralbloodmononuclearcells.FEMSimmunology

andmedicalmicrobiology.1996;14:1-13.

[37] Holt SC, Kesavalu L, Walker S, Genco CA. Virulence factors of

Porphyromonasgingivalis.Periodontology2000.1999;20:168-238.

[38] Andrukhov O, Ertlschweiger S, Moritz A, Bantleon HP, Rausch-Fan X.

DifferenteffectsofP.gingivalisLPSandE.coliLPSontheexpressionofinterleukin-6in

humangingivalfibroblasts.ActaOdontolScand.2014;72:337-45.

[39] Barksby HE, Nile CJ, Jaedicke KM, Taylor JJ, Preshaw PM. Differential

expression of immunoregulatory genes in monocytes in response to Porphyromonas

gingivalisandEscherichiacolilipopolysaccharide.ClinExpImmunol.2009;156:479-87.

[40]NebelD,ArvidssonJ,LillqvistJ,HolmA,NilssonBO.Differentialeffectsof

LPS fromEscherichiacoli andPorphyromonasgingivalison IL-6production inhuman

periodontalligamentcells.ActaOdontolScand.2013;71:892-8.

[41] Kato H, Taguchi Y, Tominaga K, UmedaM, Tanaka A. Porphyromonas

gingivalis LPS inhibits osteoblastic differentiation and promotes pro-inflammatory

cytokine production in human periodontal ligament stem cells. Arch Oral Biol.

2014;59:167-75.

[42]DiazL,HoareA,SotoC,BuguenoI,SilvaN,DutzanN,etal.Changes in

lipopolysaccharide profile of Porphyromonas gingivalis clinical isolates correlatewith

changesincolonymorphologyandpolymyxinBresistance.Anaerobe.2015;33:25-32.

[43]HirschfeldM,MaY,WeisJH,VogelSN,WeisJJ.Cuttingedge:repurification

of lipopolysaccharide eliminates signaling through both human and murine toll-like

receptor2.JImmunol.2000;165:618-22.

Page 38: Cindy Goes Dodo - Unicamprepositorio.unicamp.br/bitstream/REPOSIP/304942/1/Dodo_CindyGoe… · CINDY GOES DODO O efeito de partículas de titânio na osseointegração. The effect

41

2.2 Artigo: Titanium Particles Affect Early Stages of Osseointegration

Cindy Goes Dodo

Altair Antoninha Del Bel Cury

Stephen L. Kates

Gustavo Mendonça

Luiz Meirelles*

*Corresponding author:

Luiz Meirelles

Director Professional Products and Standards

American Dental Association

211 East Chicago Ave.

Chicago, IL 60611-2678

Jounal of Dental Research

Page 39: Cindy Goes Dodo - Unicamprepositorio.unicamp.br/bitstream/REPOSIP/304942/1/Dodo_CindyGoe… · CINDY GOES DODO O efeito de partículas de titânio na osseointegração. The effect

42

Abstract

Titanium particles shed from the implant surface during implant placement are strongly

associated with osteolysis. This study investigated the early bone response at the

implant-bone interface in the presence of titanium microparticles. New Zealand White

rabbits (UCAR #2014-031) (n=20) received 68 titanium Grade IV implants, with turned

surface (3.75x7 mm), placed bilaterally in the tibia and femur. Test group was treated

with 3 mg (tibia) and 1 mg (femur) of titanium microparticles with mean diameter of

3μm (93% ≤ 20μm) free of endotoxin. Control group was treated with saline. After 1

and 3 days the cells attached to the implant were analyzed regarding gene expression

(6 animals, 12 implants placed in tibia) of osteogenic markers. After 1 and 4 weeks the

animals were euthanized for histological and histomorphometrical analysis (14

animals, 56 implants placed in tibia and femur). Multiple regression mixed model was

used for statistical analysis. After 1 week, test group demonstrated areas of bone

resorption associated with titanium particles (2-30 μm) and absence of new bone

formation (NBF) while control group did not present any signs of bone resorption or

new bone formation. After 4 weeks, the remodeling process was observed for both

groups, but test group presented titanium particles trapped in the new bone formation.

Histomorphometrical analysis demonstrated bone-implant contact (BIC) values

reduced in test compared to control sites (p˂0.0001). The impaired healing persisted

at 4 weeks. Osteogenic expression demonstrated an upregulation of OCN (1.4-fold)

and OPN (1.0-fold) at 3 days and after 7 days, a downregultaion of COL1A1 (18.4-

fold), BSP (4.8-fold), OCN (38.9-fold), PTH (1.6-fold) was detected for test compared

to control implants. Conclusively, early stages of osseointegration were affected by

titanium particles added to cortical and trabecular bone.

Page 40: Cindy Goes Dodo - Unicamprepositorio.unicamp.br/bitstream/REPOSIP/304942/1/Dodo_CindyGoe… · CINDY GOES DODO O efeito de partículas de titânio na osseointegração. The effect

43

Introduction

The success of dental implants treatment is highly dependent on the integration

between dental implant and the surrounded tissue (5, 50). Successfully

osseointegrated dental implants can present a crestal bone breakdown ranging from

1.5 mm to 2 mm that commonly occurs in the early stages of osseointegration (51, 52).

Implants that present more bone loss in the initial stages of the healing process are

more affected for late bone loss overtime and prone to an uncertain prognostic (31,

53). The integrity of periimplant bone tissue is the key to establish a long-term success

of dental implants and, continuous bone breakdown represents a threat to implant

longevity. The etiologies behind initial bone break down must be deeply investigating

and controlled for long-term success of dental implant treatment (54).

In order to enhance the healing process and improve the prognostic of dental

implant treatment, modifications on the titanium surfaces were made, usually by

increasing surface roughness. However, during implant insertion the peaks created to

increase roughness are prone to break culminating in the released of titanium particles

in the periimplant region (23, 24, 55). Orthopedics studies demonstrated that osteolysis

could be stimulated by titanium particles from wear debris (20, 56). Titanium particles

stimulate macrophages that overexpress cytokines that leads to osteolysis (57).

Following that thought of reasoning, titanium particles shed from rough surfaces during

dental implant insertion into bone could contribute to the early marginal bone loss

around dental implants in the cortical region.

Moreover, the evaluation of the main genes related to bone formation and bone

remodeling process is another reliable way to access the early bone response and

understand the mechanisms related to bone loss. The gene Runx2 has been reported

as a percursor to osteoblast-related genes responsable for bone matrix formation as

ocitocalcin (OCN), osteopontin (OPN), collagen 1 (ColA1), bone sialoprotein (BSP),

alkaline phosphatese (ALP) (Kirkham 2007). Osteopontin can be also related to

osteoclastic activity. Osterix (OSX) is a gene especific to osteoblast ossification, bone

Page 41: Cindy Goes Dodo - Unicamprepositorio.unicamp.br/bitstream/REPOSIP/304942/1/Dodo_CindyGoe… · CINDY GOES DODO O efeito de partículas de titânio na osseointegração. The effect

44

morphogenetic protein 2 (BMP2) a growth factor related to bone fomation and

parathyroid hormone (PTH) that is associated to an increase in the concentration of

ionic calcium (Ca2+) uptaked from bone (Gyurko 2005; Granchi 2010).

Therefore, this animal study was proposed to investigate the early bone

response at the dental implant-bone interface on surgical sites in the presence of

titanium microparticles.

1. Materials and Methods 1.1 Titanium particles

Microparticles of pure titanium (<20micron, 93%, Alfa Aesar, Ward Hill, MA,

USA) was used in this experiment. The particles were weight and separated in 15 ml

tubes (Fischer Scientific, Waltham, Massachusetts, EUA) containing 25mg each.

Commercially available titanium particles can present an amount of endotoxin (10-20

units/ml), therefore a cleaning procedure was necessary (Schawab 2005, Ragab 1999;

Bi 2001).

1.1.1 Cleaning procedure of titanium particles The titanium particles were cleaned using nitric acid 25% for 2 h followed by 3

washes in Phosphate-buffered saline (PBS) (Invitrogen, Waltham, Massachusetts,

USA) for 5 minutes each time and placed in 95% ethanol with 0.1N of NAOH for 24h,

followed by 3 washes in PBS (Ragab et al 1999; Jin et al 2011). After the cleaning

procedure, the presence of endotoxins was measured using LAL Chromogenic

Endotoxin Quantitation Kit (Thermo Fisher Scientific, Grand Island, NY, USA) following

the manufacture protocol. The detection measured was <0.01endotoxin units/ml,

confirming the effectiveness of the cleaning procedure (Schwab et al 2005). The

titanium particles were kept in PBS 25mg/ml at 4°C (Han et al., 2013; Montiel et al.,

2012) and the solution was agitated for 20 min prior each usage (Zhang et al., 2012).

Page 42: Cindy Goes Dodo - Unicamprepositorio.unicamp.br/bitstream/REPOSIP/304942/1/Dodo_CindyGoe… · CINDY GOES DODO O efeito de partículas de titânio na osseointegração. The effect

45

1.2. Histological and Histomorphometric analysis New Zealand white rabbits (UCAR #2014-031) were used for histological and

histomorphometric evaluation (n=14 animals). Before the surgery the animals were

knocked down under general anesthesia with 0.3mg/ml intramuscular fentanyl and

10mg/ml fluanisone followed by 2.5 mg intraperitoneal diazepam. The legs were

shaved and disinfected with chlorhexidine before injection of 1 ml of lidocaine into each

insertion site. The skin and fascia layers were opened and bone drilling was performed

with profuse irrigation with saline solution.

Before the insertion of the implant with turned surface (n=56 implants), test

group received titanium microparticles that were previously diluted in 100μl of saline,

and applied homogeneously with a pipette in the implant surface. For test group, the

implants (n=28 implants) were placed in tibia (n= 14 implants) received 3 mg of titanium

microparticles and in femur (n=14 implants) only 1 mg. For control group (n=28

implants) 100μl of saline was placed in the implant for both tibia and femur

implantation. The implants were inserted with a rotation of 25 rpm and the fascia layers

were closed with absorbable suture while skin layer with polypropylene. After 1 and 4 weeks after surgery the animals were euthanized. General

anesthesia was induced by Ketamine 44mg/kg and Xylazine5mg /kg SQ with 100m/kg

sodium phenobarbital via ear vein. The implants and surrounding bone were removed

and fixed with 4% neutral buffered formaldehyde, dehydrated in graded series of

ethanol and the specimens were embedded in light curing resin (Technovit 7200 VLC,

Kültzer & Co, Germany). The slides were prepared following the Donath’s technique

(Donath K. et al, 1982). Examinations were performed with a Nikon 80i microscope

(Nikon Instruments, Melville, NY, USA) equipped with an image software analysis

(NIS-Elements BR 3.2, Nikon, USA) using 1X to 100X objectives for descriptive

evaluation and morphometric measurements. The qualitative analysis aimed at

describing the early bone formation events at the control and test implants. The

histomorphometrical evaluations comprised measurements of the degree of bone

Page 43: Cindy Goes Dodo - Unicamprepositorio.unicamp.br/bitstream/REPOSIP/304942/1/Dodo_CindyGoe… · CINDY GOES DODO O efeito de partículas de titânio na osseointegração. The effect

46

implant contact limited by the first and third coronal thread at a distance of

approximately 600μm from the thread valleys.

2.3 Osteogenic genes analysis

For that analysis, the surgerys were perfomed in the tibia of 6 New Zealand

White rabbits. Test group received 3mg of titanium particles diluted in 100 μl of saline,

and the control group received 100μl of saline. The animals were euthanized after 3

and 7 days. After euthanesia the implants were remove with contratoque and the

adherent cells (Fig 14) were collected for gene analyses.

The RNA was extracted using TRIzol Reagent (Invitrogen, Carlsbad, CA, USA)

following the manufacture protocol. The RNA was analyzed using Nanodrop (ND-1000

Spectrophotometer Wilmington, DE, USA) and electrophoresis agar gel 0.8%. Total

RNA extracted was cleaned using DNA-free™ DNA Removal Kit (Ambion, Life

Technologies, Carlsbad, California, USA) and purified using RNeasy Mini Kit (Qiagen,

Valencia, CA, USA). The purified RNA was converted to cDNA in a reverse

transcriptase reaction using a PrimeScrip RT reagent kit (Qiagen, Valencia, CA, USA).

The Real Time Reverse Transcriptase-PCR (RT-PCR) was performed using the

PerfeCta SYBR Green FastMix Kit (Quanta Biosciences, Gaithersburg, Maryland,

USA) and StepOnePlus real-time PCR system (Life Technologies) following 40 cycles

of 95oC for 10s, and 60oC for 30s and 95oC for 10s. The comparative quantification

algorithm (ΔΔCt) method was used to data analysis using relative expression level of

the osteogenic genes compared to the housekeeping gene Glyceraldehyde 3-

phosphate dehydrogenase (GAPDH), the reactions were run in triplicate.

Results Histological evaluation

Page 44: Cindy Goes Dodo - Unicamprepositorio.unicamp.br/bitstream/REPOSIP/304942/1/Dodo_CindyGoe… · CINDY GOES DODO O efeito de partículas de titânio na osseointegração. The effect

47

The implant site in the femur consisted mainly of trabecular bone, whereas a

cortical layer of 1.5 mm in height characterized tibia sites. The original trabecular bone

in the femur were in contact with the top 4th to 5th threads, and the cortical layer in the

tibia was in contact to the 2nd to 3rd top threads. The apical part of test and control

implants in the tibia (approximately 2.5mm) was inside the bone marrow cavity.

Figure 1. A. In control group after 1 week it is possible to observe absence of

resorption and new bone formation. B. After 1 week in test group areas of bone resorption (

A B

C D

Page 45: Cindy Goes Dodo - Unicamprepositorio.unicamp.br/bitstream/REPOSIP/304942/1/Dodo_CindyGoe… · CINDY GOES DODO O efeito de partículas de titânio na osseointegração. The effect

48

red circle) is observed near to titanium particles. C. After 4 weeks in control group many areas

of new bone formation can be observed near areas of bone resorption, but usually the

resorption areas are associated to new bone formation( red square). D. After 4 weeks in

experimental group many areas of new bone formation can be observed and it is possible to

see titanium particles traped into bone (red arrow).

1 week Histological evaluation demonstrated that after 1 week, in control group, (Fig 1)

remodeling process did not start. A normal healing process for one-week period was

observed (9) with no signs of bone resorption and few areas of new bone formation.

The areas between threads showed gaps of 150-200µm, these areas where filled with

blood cells and small pieces of drilled bone.

Experimental group, presented areas of resorption in the first three threads (Fig

2) not presenting new bone formation. Also, was possible to observe presence of

titanium particles (2-30 µm) between bone/implant at the cortical level within the

threads interface.

4 weeks After 4 weeks, control group showed areas of resorption associated to new bone

formation (Fig. 3) characterizing the remodeling process, a normal finding for this

period of healing (Lang et al 2011; Terheyden et al 2011).

The experimental group presented extensive scalloped areas indicative of bone

resorption and presence of titanium particles (15-30 µm) surrounded by new bone

formation (Fig 4). The particles were at least 200 µm of distance from the titanium

surface suggesting that they were released from the implant (Franchi et al., 2007).

Page 46: Cindy Goes Dodo - Unicamprepositorio.unicamp.br/bitstream/REPOSIP/304942/1/Dodo_CindyGoe… · CINDY GOES DODO O efeito de partículas de titânio na osseointegração. The effect

49

2.4 Histomorphometric evaluation

The bone-to-implant contact (BIC) in the first three treads (Fig. 5) was measured

using a microscope (80i; Nikon Instruments, USA) equipped with an image software

analysis (NIS-Elements BR 3.2, Nikon, USA).

The BIC results showed that bone contact decrease in test compared to control

group after 1 and 4 weeks (Chart 1). A reduction of 23,4% (femur) and 43,4% (tibia)

of BIC values was observed for test compared to control groups after 1 week. After 4

weeks, a reduction of 20.2% (femur) and 21.08% (tibia) of BIC values was observed

for test compared to control groups.

Chart 1. Bone to implant contact analyzed after 1 and 4 weeks for Tibia and

femur.

4. Scanning electron microscope(SEM) and EDAX ( Energy Dispersive

X-RAY Spectroscopy) The slides used for histological analyses were sputtered coated (Denton

Vaccum, Moorestown, New Jersey, USA) with 60 angstroms of gold, this process

makes the surface electrically conductive, allowing them to be imaged with a SEM

Page 47: Cindy Goes Dodo - Unicamprepositorio.unicamp.br/bitstream/REPOSIP/304942/1/Dodo_CindyGoe… · CINDY GOES DODO O efeito de partículas de titânio na osseointegração. The effect

50

(Zeiss Auriga SEM/FIB with EDAX, Dublin, California, USA). The images samples

were analyzes on SEM with a Backscatterd probe, that shows small changes in sample

chemistry. The SEM used for this study also included an EDAX detector for Energy

Dispersive X-RAY Spectroscopy, this tool allowed to make chemical maps of the

sample comproving the presence of titanium particles (Fig. 5 and 6).

Figure 2. For experimental group after 1 week. In A the histological image

in the region were titanium particles were observed. The presence of titanium particles (red arrows) was confirmed using a EDX mapping. The red line represents the interface between bone and titanium implant.

Page 48: Cindy Goes Dodo - Unicamprepositorio.unicamp.br/bitstream/REPOSIP/304942/1/Dodo_CindyGoe… · CINDY GOES DODO O efeito de partículas de titânio na osseointegração. The effect

51

Figure 3. For experimental group after 4 weeks, the presence of titanium

(red arrow) observed in the histological (A) analysis was confirmed using a SEM/EDX graphic. The green arrow represents the peak of titanium.

5. Osteogenic analysis

The results (Fig 7) showed that after 3 days the presence of titanium particles

was stimulating gene expression of osteogenic genes, compared to control (Piolette et

al 2004). The fold increase in OPN (1.1 fold), as a pre-osteoclast gene and PTH (1.3

fold), a marker of ion calcium and the increase of RUNX2 (0.7 fold) and OSX (0.5 fold)

osteoblast markers, strongly suggest bone formation (Haynes 2004).

At 7 days (Fig.8) a downsregulation in RUNX2(-1.2 fold) and OSX (-2.0 fold)

indicated a decrease in osteoblastic activity and the upregulation of OPN (1.0 fold) and

PTH (1.4 fold) showed a maintenance of osteoclast activity, indicating bone loss

(Gyurko 2005; Granchi 2010). BMP-2 (1.1 fold) was upregulated indicating that even

!

A

Page 49: Cindy Goes Dodo - Unicamprepositorio.unicamp.br/bitstream/REPOSIP/304942/1/Dodo_CindyGoe… · CINDY GOES DODO O efeito de partículas de titânio na osseointegração. The effect

52

with the evidence of osteoclast activity, the osteoblast possibly were differentiating and

starting the cells recruitment for bone formation.

Fig. 4. Osteogenic gene expression, showing fold differences at 3 days and 7

days compared to control.

Statistical Analysis The multiple regression mixed models were used to study the effect of group on

the outcomes, adjusting for endpoint and site. The calculated effect sizes were

adjusted for multiple comparisons using Dunnett–Hsu’s correction. All analyses were

performed using SAS, release 9.2 (SAS Institute Inc., Cary, NC, USA). The values that

p<0.05 were considered significant.

Discussion Overall marginal bone loss (MBL) is higher during the first year and

limited thereafter. MBL during the first year ranging from 1.5 mm to 2 mm is considered

Page 50: Cindy Goes Dodo - Unicamprepositorio.unicamp.br/bitstream/REPOSIP/304942/1/Dodo_CindyGoe… · CINDY GOES DODO O efeito de partículas de titânio na osseointegração. The effect

53

a normal finding (58). The marginal bone breakdown, even as a normal finding, it is

critical for implant prognosis and is related to later bone loss (53). Titanium particles

are shed from rough treated surfaces during implant placement into bone and the

particles can be trapped in the cortical region, possibly contributing to the initial bone

breakdown (23, 24, 55, 59). This study was developed to analyze the influence of

titanium particles, shed from rough treated titanium surfaces in the cortical region

during implant insertion, in the initial marginal bone loss in dental implants.

Histological evaluation demonstrated that after 1week test group had more sites

of resorption in the first three threads than control group. Also was possible to observe

titanium particles near the implant surface in the entire implant for test group, mainly

in the cortical region (19, 23, 55). The presence of titanium particles near the resorption

sites indicated that osteolysis was related to titanium particles (Kaar et al 2001). Areas

of new bone formation were rarely in control and test and it was a normal finding for a

1week of evaluation (Terheyden et al 2012). After 4 weeks of healing, many areas of

new bone formation and areas of resorption could be observed in test and control

group, these findings were expected for this period of healing, related to the remodeling

process (9). Test group presented titanium particles around 20 µm surrounded by new

bone formation, the particles were at least 200 µm of distance from the surface,

suggesting that larger particles of titanium and/or agglomerates of particles were

trapped in the bone matrix (59).

The bone/implant contact (BIC) results showed that bone contact decrease in

test compared to control group after 1 and 4 weeks for tibia and femur. A reduction of

23,4% (femur) and 43,4% (tibia) of BIC values was observed for test compared to

control groups, as a result of enhanced bone resorption triggered by Ti particle after 1

week. After 4 weeks, a reduction of 20.2% (femur) and 21.08% (tibia) of BIC values

were observed for test compared to control groups. In tibia was used 3 mg of titanium

particles, and for femur was used 1mg. The sites that received more titanium particles

presented more bone resorption suggesting a possible dose-dependent reaction

(Goodman et al., 2014; Shin et al., 2012). The dose-dependency behavior, in this

Page 51: Cindy Goes Dodo - Unicamprepositorio.unicamp.br/bitstream/REPOSIP/304942/1/Dodo_CindyGoe… · CINDY GOES DODO O efeito de partículas de titânio na osseointegração. The effect

54

study, cannot be confirmed because tibia has more cortical bone and femur more

trabecular structures.

The histological analyses and mRNA expression of osteogenic genes can be

correlated. At 3 days the upregulation of RUNX2 and OSX with the upregulation of

PTH and OSX for test group is confirmed in the histological after 7 days, results

showing presence of bone resorption in the firt three treads for test group and new

bone formation in the endosteum. At 7 days an downregulation of the genes

responsible for matrix production (BSP, COL1A1, OCN, ALP) and for ossification

(RUNX-2, OSX) and an upregulation of genes related to the liberation of the ion Ca

(PTH and OPN) suggest bone resorption. The upregulation of BMP-2 at 7 days in test

group indicated the begining of osteoblast recruitment that can start the process of

bone formation, that was possible to observe in the histological images after 4 weeks

bone formation on test group.

These results indicate that titanium particles can affect early stages of

osseintegration and have influence the initial marginal bone breakdown. The marginal

bone breakdown is critical in the maintenance of the dental implant treatment.

Controlling and managing the factors involved in the beginning of this osteolytic

process is crucial for the long-term survival of dental implants.

Conclusion Early stages of osseointegration were affected by the presence of titanium

particles in the cortical and trabecular bone. Based on the results of this animal study,

a new etiology for early bone loss around dental implants is presented.

Acknowledgments The authors declare no potential conflicts of interest with respect to the

authorship and/or publication of this article. We acknowledge the São Paulo Research

Foundation for granting scholarships FAPESP# 2013/19791-8 and

Page 52: Cindy Goes Dodo - Unicamprepositorio.unicamp.br/bitstream/REPOSIP/304942/1/Dodo_CindyGoe… · CINDY GOES DODO O efeito de partículas de titânio na osseointegração. The effect

55

FAPESP#2014/10085-6 for the author Dr. Cindy Dodo during the development of this

study.

References Albrektsson T, Buser D, Sennerby L (2012). Crestal bone loss and oral

implants. Clinical implant dentistry and related research 14(6):783-791. Balshi TJ, Wolfinger GJ, Stein BE, Balshi SF (2015). A Long-term

Retrospective Analysis of Survival Rates of Implants in the Mandible. The International journal of oral & maxillofacial implants 30(6):1348-1354.

Cochran DL, Nummikoski PV, Schoolfield JD, Jones AA, Oates TW (2009).

A prospective multicenter 5-year radiographic evaluation of crestal bone levels over time in 596 dental implants placed in 192 patients. Journal of periodontology 80(5):725-733.

Flatebo RS, Hol PJ, Leknes KN, Kosler J, Lie SA, Gjerdet NR (2011).

Mapping of titanium particles in peri-implant oral mucosa by laser ablation inductively coupled plasma mass spectrometry and high-resolution optical darkfield microscopy. J Oral Pathol Med 40(5):412-420.

Franchi M, Orsini E, Martini D, Ottani V, Fini M, Giavaresi G et al. (2007).

Destination of titanium particles detached from titanium plasma sprayed implants. Micron 38(6):618-625.

Fransson C, Lekholm U, Jemt T, Berglundh T (2005). Prevalence of

subjects with progressive bone loss at implants. Clinical oral implants research 16(4):440-446.

Galindo-Moreno P, Leon-Cano A, Ortega-Oller I, Monje A, F OV, Catena A

(2014). Marginal bone loss as success criterion in implant dentistry: beyond 2 mm. Clinical oral implants research.

Page 53: Cindy Goes Dodo - Unicamprepositorio.unicamp.br/bitstream/REPOSIP/304942/1/Dodo_CindyGoe… · CINDY GOES DODO O efeito de partículas de titânio na osseointegração. The effect

56

Kaar SG, Ragab AA, Kaye SJ, Kilic BA, Jinno T, Goldberg VM et al. (2001). Rapid repair of titanium particle-induced osteolysis is dramatically reduced in aged mice. Journal of orthopaedic research : official publication of the Orthopaedic Research Society 19(2):171-178.

Meyer U, Buhner M, Buchter A, Kruse-Losler B, Stamm T, Wiesmann HP

(2006). Fast element mapping of titanium wear around implants of different surface structures. Clinical oral implants research 17(2):206-211.

Mints D, Elias C, Funkenbusch P, Meirelles L (2014). Integrity of implant

surface modifications after insertion. Int J Oral Maxillofac Implants 29(1):97-104. Oh TJ, Yoon J, Misch CE, Wang HL (2002). The causes of early implant

bone loss: myth or science? Journal of periodontology 73(3):322-333. Papaspyridakos P, Chen CJ, Singh M, Weber HP, Gallucci GO (2012).

Success criteria in implant dentistry: a systematic review. Journal of dental research 91(3):242-248.

Schwarz EM, Benz EB, Lu AP, Goater JJ, Mollano AV, Rosier RN et al.

(2000). Quantitative small-animal surrogate to evaluate drug efficacy in preventing wear debris-induced osteolysis. Journal of orthopaedic research : official publication of the Orthopaedic Research Society 18(6):849-855.

Senna P, Antoninha Del Bel Cury A, Kates S, Meirelles L (2013). Surface

Damage on Dental Implants with Release of Loose Particles after Insertion into Bone. Clinical implant dentistry and related research.

Shin DK, Kim MH, Lee SH, Kim TH, Kim SY (2012). Inhibitory effects of

luteolin on titanium particle-induced osteolysis in a mouse model. Acta biomaterialia 8(9):3524-3531.

Terheyden H, Lang NP, Bierbaum S, Stadlinger B (2012). Osseointegration-

-communication of cells. Clinical oral implants research 23(10):1127-1135. Vandeweghe S, Cosyn J, Thevissen E, Van den Berghe L, De Bruyn H

(2012). A 1-year prospective study on Co-Axis implants immediately loaded with a full ceramic crown. Clinical implant dentistry and related research 14 Suppl 1(e126-138.

Page 54: Cindy Goes Dodo - Unicamprepositorio.unicamp.br/bitstream/REPOSIP/304942/1/Dodo_CindyGoe… · CINDY GOES DODO O efeito de partículas de titânio na osseointegração. The effect

57

3 DISCUSSÃO

A literatura ortopédica demonstrou a influência das partículas de titânio

provenientes do desgaste de implantes ortopédicos no processo osteolítico, que leva

a falha da prótese e que pode ser exacerbada na presença de endotoxinas

bacterianas. A presença de partículas de titânio na região peri-implantar dental pode

ser um obstáculo para a regeneração óssea, levando a perda de óssea marginal. Este

trabalho teve como objetivo analisar o comportamento dos macrófagos humanos na

presença de partículas de titânio liberados durante a inserção de implantes dentários,

associado a um patógeno da região periimplantar P. Gingivalis, e analisar a influência

das partículas de titânio na perda óssea marginal inicial em implantes dentários.

Após o contato com partículas de titânio e Lipopolissacarídeos de

Porphyromonas gingivalis os macrófagos foram avaliados quanto a viabilidade celular.

Apesar de demonstrar viabilidade celular semelhantes entre os grupos, a expressão

gênica e a produção de citocinas poderia estar alterada, portanto comportamento

celular foi avaliado (Irshad et al., 2013; Zhang et al., 2011). Os resultados da

expressão gênica mostraram que TNF-α e IL1-β tiveram a expressão mais elevada

após 12h e IL-6 após 24 horas, seguindo o padrão esperado do processo de

inflamação relacionada a presença de partículas de titânio (Cachinho et al., 2013;

Obando-Pereda et al., 2014). Os grupos com nanopartículas de titânio apresentaram

a expressão mais elevada para todos os genes, o que nos leva a concluir que quanto

menor o tamanho da partícula, maior é a reação de inflamatória (Zhang et al., 2011).

Micropartículas de titânio também afetaram a expressão dos genes pró-inflamatórios,

confirmando a influência de micro e nanopartículas de titânio na expressão de

citocinas pró-inflamatórias relacionadas com o processo osteolítico (Goodman et al.,

2014; Zhang et al., 2013).

Para as análises de produção de citocinas pró-inflamatórias pelos macrófagos,

IL1-β teve maior produção em todos grupos analisados. IL1-β é a citocina produzida

Page 55: Cindy Goes Dodo - Unicamprepositorio.unicamp.br/bitstream/REPOSIP/304942/1/Dodo_CindyGoe… · CINDY GOES DODO O efeito de partículas de titânio na osseointegração. The effect

58

para iniciar o processo osteolítico e desempenha um papel importante na expressão

de TNF-α, que modula a produção de RANK-L (Receptor activator of nuclear factor

kappa-B ligand), conduzindo a reabsorção óssea (Wei et al., 2009), estes resultados

sugerem que, se a análise fosse feita em tempos maiores que 48h a produção de

TNF-α poderia estar aumentada. Os grupos tratados com nanopartículas de titânio

apresentaram maior produção de citocinas após 48h.

Pode-se observar que a expressão gênica e produção de citocinas não

apresentaram um comportamento paralelo. Por exemplo, o TNF-α foi expresso após

12h para os grupos N, LM, e LN e a produção de proteína não ocorreu após 12h ou

24h. Outro fator discrepante foi a expressão gênica de IL-6, que foi maior do que as

outras citocinas, entretanto IL1-β foi a citocina mais produzida. Outros estudos na

literatura ortopédica descreveram resultados semelhantes ao nosso (Bi et al., 2001;

Obando-Pereda et al., 2014; Schwab et al., 2006; Trindade et al., 2001), mas o motivo

da falta de sincronia entre expressão e produção das citocinas ainda é desconhecida.

Uma possível explicação seria o processo pós-transcricional ou mecanismos

autócrinos que previnem uma reação inflamatória excessiva que pode ser prejudicial

ao organismo (Obando-Pereda et al., 2014).

Além disso estudos da literatura ortopédica mostraram que as partículas de

titânio contribuem para o aumento da resposta inflamatória, e a presença de

endotoxinas pode exacerbar ainda mais reação inflamatória (Bi et al., 2001). Neste

estudo, a associação de partículas de titânio com um patógeno comum da cavidade

oral, LPS de P. gingivalis foi analisado, e não houve aumento da expressão ou da

produção de citocinas pró-inflamatórias quando associado com micro e nanopartículas

de titânio. LPS de P. gingivalis é relatado por ser menos potente comparado a outras

bactérias Gram-negativa quanto a indução de citocinas pró-inflamatórias em vários

tipos de células, incluindo monócitos / macrófagos (Diya et al., 2008; Lu et al., 2001;

Ogawa and Uchida, 1996; Trindade et al., 2001). Esta é uma característica que faz

com que esta bactéria seja altamente invasiva sem alarmar o sistema imune do

hospedeiro (Holt et al., 1999).

Page 56: Cindy Goes Dodo - Unicamprepositorio.unicamp.br/bitstream/REPOSIP/304942/1/Dodo_CindyGoe… · CINDY GOES DODO O efeito de partículas de titânio na osseointegração. The effect

59

Com relação a avaliação histológica do estudo in vivo, notamos que o grupo

com partículas de titânio após 1 semana teve mais sítios de reabsorção nas três

primeiras roscas que o grupo controle. Também foi possível observar partículas de

titânio perto da superfície do implante, em todo o corpo do implante para o grupo com

partículas, mas principalmente na região cortical (Meyer et al., 2006; Mints et al., 2014;

Senna et al., 2015). A presença de partículas de titânio próximo as áreas de

reabsorção óssea é um forte indicativo da influência destas partículas no processo

osteolítico (Kaar et al., 2001). Áreas de neoformação óssea foram raras tanto no

controle como no teste, e trata-se de um achado previsto para 1 semana após a

implantação cirúrgica (Terheyden et al., 2012). Após 4 semanas de cicatrização,

muitas áreas de neoformação óssea e áreas de reabsorção puderam ser observadas,

no grupo teste e controle, este resultado era esperado para este período de avaliação,

pois trata-se do processo de remodelação óssea (Terheyden et al., 2012). O grupo

teste apresentou partículas de titânio com cerca de 20μm presos nas regiões de

neoformação óssea, e estas partículas estavam a 200μm de distância da superfície

do implante, o que sugere que as partículas maiores de titânio e/ou aglomerados de

partículas ficaram presos na matriz óssea após a fagocitose por osteoclastos (Franchi

et al., 2007a).

Para o contato osso/implante (BIC) os resultados mostraram diminuição de BIC

do teste comparada ao controle após 1 e 4 semanas para a tíbia e o fêmur. Observou-

se uma redução de 23,4% (fêmur) e 43,4% (tíbia) de valores BIC para teste em

comparação com controle, como resultado de uma maior reabsorção óssea

desencadeada pela presença de partículas de titânio após 1 semana. Após 4

semanas, observou-se uma redução de 20,2% (fêmur) e 21,08% (tíbia) de valores BIC

para teste em comparação ao controle. Observa-se que ao longe do tempo a perda

óssea diminuiu, sugerindo uma retomada da formação óssea, em outras palavras as

partículas de titânio estariam afetando mais os estágios iniciais da osseointegração

com uma retomada da formação óssea (Galindo-Moreno et al., 2014). Na tíbia, foram

usados 3 mg de partículas de titânio, e no fêmur foi usado 1 mg. Os sítios que

Page 57: Cindy Goes Dodo - Unicamprepositorio.unicamp.br/bitstream/REPOSIP/304942/1/Dodo_CindyGoe… · CINDY GOES DODO O efeito de partículas de titânio na osseointegração. The effect

60

receberam mais partículas de titânio apresentaram maior reabsorção óssea,

sugerindo uma possível dose-dependência (Goodman et al., 2014; Shin et al., 2012).

O comportamento de dose-dependência neste estudo não pode ser confirmado, pois

a tíbia possui mais osso cortical e o fêmur estruturas mais trabeculares, o que poderia

influenciar na velocidade de migração das células de defesa.

A avaliação dos principais genes relacionados com a formação e remodelação

óssea é uma maneira de compreender os mecanismos relacionados com a perda

óssea. O gene Runt-related transcription factor 2 (RUNX2) está relacionado com a

presença de osteoblastos e é precursor de genes relacionados com a formação de

matriz óssea como ocitocina (OCN), osteopontina (OPN), colágeno 1 (ColA1),

sialoproteina óssea (BSP), fosfatase alcalina (ALP) (Kirkham GR, 2007). OCN pode

também estar relacionado com a atividade dos osteoclastos. Osterix (OSX) é um gene

específico para a ossificação dos osteoblastos e a proteína morfogenética óssea tipo

2 (BMP-2) um fator de crescimento relacionado com formação óssea. O

paratohormônio (PTH) está associado a um aumento na concentração de cálcio iónico

(Ca2 +) removido do osso (Granchi et al., 2010; Gyurko et al., 2005).

A análise histológica e a expressão de genes osteogênicos do estudo in vivo

podem ser correlacionadas. Após 3 dias de avaliação houve um aumento da

expressão de RUNX2, OSX e PTH para o grupo de teste que é confirmado na análise

histológica após 7 dias, os resultados mostram presença de reabsorção óssea nas

três primeiras roscas para grupo de teste e neoformação óssea na região do endósteo.

Após 7 dias uma diminuição da expressão dos genes responsáveis pela produção de

matriz óssea foi observada BSP, COL1A1, OCN, ALP e dos genes relacionados a

calcificação óssea RUNX-2, OSX e um aumento na expressão dos genes

relacionados com a liberação de cálcio PTH e OPN o que sugere reabsorção óssea.

O aumento na expressão de BMP-2 após 7 dias para o teste pode indicar o início do

recrutamento de osteoblastos para o início do processo de formação do óssea, que

foi possível observar nas imagens histológicas após 4 semanas a formação de osso

no grupo de teste.

Page 58: Cindy Goes Dodo - Unicamprepositorio.unicamp.br/bitstream/REPOSIP/304942/1/Dodo_CindyGoe… · CINDY GOES DODO O efeito de partículas de titânio na osseointegração. The effect

61

Nos nossos resultados pudemos observar que a presença de partículas de

titânio pode afetar as células THP-1 com relação a expressão gênica e produção de

citocinas pró-inflamatórias relacionadas ao processo osteolítico e que a presença de

endotoxinas provenientes de P. Gingivalis não aumentou a produção dessas citocinas.

E com o estudo in vivo foi confirmamos que as partículas de titânio podem afetar os

estágios iniciais de ossseointegração. A reabsorção óssea marginal é um ponto crítico

para a manutenção do tratamento de implantes dentários. O manejo e controle dos

fatores envolvidos no início deste processo osteolíico é essencial para o bom

prognóstico de implantes dentários

4 CONCLUSÃO

A presença de micro e nanopartículas de titânio estimula a expressão e

produção de citocinas pró-inflamatórias relacionadas ao processo osteolítico, e as

partículas de menor tamanho exercem maior influência nesta reação. A associação

de partículas de titânio com lipopolissacharideos de P.gingivalis não aumentou a

expressão gênica das citocinas pró- inflamatórias e diminuiu a produção em

comparação com os grupos tratados somente com partículas de titânio. O estágio

iniciail da osseointegração é afetado pela presença de partículas de titânio no osso

cortical e trabecular. Com base nos resultados deste estudo, apresentamos uma nova

etiologia para perda óssea marginal nos estágios inciais da osseointegração.

Page 59: Cindy Goes Dodo - Unicamprepositorio.unicamp.br/bitstream/REPOSIP/304942/1/Dodo_CindyGoe… · CINDY GOES DODO O efeito de partículas de titânio na osseointegração. The effect

62

Referências 1. AlbrektssonT,SennerbyL.[Directboneanchorageoforalimplants:clinicalandexperimentalconsiderationsoftheconceptofosseointegration].Parodontologie.1990;1(4):307-20.2. NeohKG,HuX,ZhengD,KangET.Balancingosteoblastfunctionsandbacterialadhesiononfunctionalizedtitaniumsurfaces.Biomaterials.2012;33(10):2813-22.3. AlbrektssonT,SennerbyL.Directboneanchorageoforalimplants:clinicalandexperimentalconsiderationsoftheconceptofosseointegration.TheInternationaljournalofprosthodontics.1990;3(1):30-41.4. AlbrektssonT.Directboneanchorageofdentalimplants.TheJournalofprostheticdentistry.1983;50(2):255-61.5. AlbrektssonT,BuserD,SennerbyL.Crestalbonelossandoralimplants.ClinImplantDentRelatRes.2012;14(6):783-91.6. WennerbergA,AlbrektssonT.Effectsoftitaniumsurfacetopographyonboneintegration:asystematicreview.Clinicaloralimplantsresearch.2009;20Suppl4:172-84.7. AlbrektssonT,JanssonT,LekholmU.Osseointegrateddentalimplants.DentalclinicsofNorthAmerica.1986;30(1):151-74.8. BorsariV,GiavaresiG,FiniM,TorricelliP,SalitoA,ChiesaR,etal.Physicalcharacterizationofdifferent-roughnesstitaniumsurfaces,withandwithouthydroxyapatitecoating,andtheireffectonhumanosteoblast-likecells.JournalofbiomedicalmaterialsresearchPartB,Appliedbiomaterials.2005;75(2):359-68.9. TerheydenH,LangNP,BierbaumS,StadlingerB.Osseointegration--communicationofcells.Clinicaloralimplantsresearch.2012;23(10):1127-35.10. AlbrektssonT,ZarbG,WorthingtonP,ErikssonAR.Thelong-termefficacyofcurrentlyuseddentalimplants:areviewandproposedcriteriaofsuccess.TheInternationaljournaloforal&maxillofacialimplants.1986;1(1):11-25.11. SykarasN,IacopinoAM,MarkerVA,TriplettRG,WoodyRD.Implantmaterials,designs,andsurfacetopographies:theireffectonosseointegration.Aliteraturereview.TheInternationaljournaloforal&maxillofacialimplants.2000;15(5):675-90.12. SutterF,SchroederA,BuserDA.ThenewconceptofITIhollow-cylinderandhollow-screwimplants:Part1.Engineeringanddesign.TheInternationaljournaloforal&maxillofacialimplants.1988;3(3):161-72.13. CarrAB,BealsDW,LarsenPE.Reverse-torquefailureofscrew-shapedimplantsinbaboonsafter6monthsofhealing.TheInternationaljournaloforal&maxillofacialimplants.1997;12(5):598-603.14. ZhangY,YuW,JiangX,LvK,SunS,ZhangF.AnalysisofthecytotoxicityofdifferentiallysizedtitaniumdioxidenanoparticlesinmurineMC3T3-E1preosteoblasts.JournalofmaterialsscienceMaterialsinmedicine.2011;22(8):1933-45.15. GoodmanSB,KonttinenYT,TakagiM.Jointreplacementsurgeryandtheinnateimmunesystem.Journaloflong-termeffectsofmedicalimplants.2014;24(4):253-7.

Page 60: Cindy Goes Dodo - Unicamprepositorio.unicamp.br/bitstream/REPOSIP/304942/1/Dodo_CindyGoe… · CINDY GOES DODO O efeito de partículas de titânio na osseointegração. The effect

63

16. WeiD,ZhouY,YangC.Structure,cellresponseandbiomimeticapatiteinductionofgradientTiO2-based/nano-scalehydrophilicamorphoustitaniumoxidecontainingCacompositecoatingsbeforeandaftercrystallization.ColloidsandsurfacesB,Biointerfaces.2009;74(1):230-7.17. BiY,VanDeMotterRR,RagabAA,GoldbergVM,AndersonJM,GreenfieldEM.Titaniumparticlesstimulateboneresorptionbyinducingdifferentiationofmurineosteoclasts.TheJournalofboneandjointsurgeryAmericanvolume.2001;83-A(4):501-8.18. RagabAA,VanDeMotterR,LavishSA,GoldbergVM,NinomiyaJT,CarlinCR,etal.Measurementandremovalofadherentendotoxinfromtitaniumparticlesandimplantsurfaces.Journaloforthopaedicresearch:officialpublicationoftheOrthopaedicResearchSociety.1999;17(6):803-9.19. MeyerU,BuhnerM,BuchterA,Kruse-LoslerB,StammT,WiesmannHP.Fastelementmappingoftitaniumweararoundimplantsofdifferentsurfacestructures.Clinicaloralimplantsresearch.2006;17(2):206-11.20. ShinDK,KimMH,LeeSH,KimTH,KimSY.Inhibitoryeffectsofluteolinontitaniumparticle-inducedosteolysisinamousemodel.Actabiomaterialia.2012;8(9):3524-31.21. Obando-PeredaGA,FischerL,Stach-MachadoDR.Titaniumandzirconiaparticle-inducedpro-inflammatorygeneexpressioninculturedmacrophagesandosteolysis,inflammatoryhyperalgesiaandedemainvivo.Lifesciences.2014;97(2):96-106.22. SennaP,AntoninhaDelBelCuryA,KatesS,MeirellesL.SurfaceDamageonDentalImplantswithReleaseofLooseParticlesafterInsertionintoBone.Clinicalimplantdentistryandrelatedresearch.2015;17(4):681-92.23. MintsD,EliasC,FunkenbuschP,MeirellesL.Integrityofimplantsurfacemodificationsafterinsertion.TheInternationaljournaloforal&maxillofacialimplants.2014;29(1):97-104.24. FlateboRS,HolPJ,LeknesKN,KoslerJ,LieSA,GjerdetNR.Mappingoftitaniumparticlesinperi-implantoralmucosabylaserablationinductivelycoupledplasmamassspectrometryandhigh-resolutionopticaldarkfieldmicroscopy.Journaloforalpathology&medicine:officialpublicationoftheInternationalAssociationofOralPathologistsandtheAmericanAcademyofOralPathology.2011;40(5):412-20.25. OlmedoDG,TasatDR,EvelsonP,GuglielmottiMB,CabriniRL.Biologicalresponseoftissueswithmacrophagicactivitytotitaniumdioxide.JournalofbiomedicalmaterialsresearchPartA.2008;84(4):1087-93.26. RutarA,LangNP,BuserD,BurginW,MombelliA.Retrospectiveassessmentofclinicalandmicrobiologicalfactorsaffectingperiimplanttissueconditions.Clinicaloralimplantsresearch.2001;12(3):189-95.27. LeonhardtA,BergstromC,LekholmU.Microbiologicdiagnosticsattitaniumimplants.Clinicalimplantdentistryandrelatedresearch.2003;5(4):226-32.28. LeeKH,MaidenMF,TannerAC,WeberHP.Microbiotaofsuccessfulosseointegrateddentalimplants.Journalofperiodontology.1999;70(2):131-8.

Page 61: Cindy Goes Dodo - Unicamprepositorio.unicamp.br/bitstream/REPOSIP/304942/1/Dodo_CindyGoe… · CINDY GOES DODO O efeito de partículas de titânio na osseointegração. The effect

64

29. MombelliA,MarxerM,GaberthuelT,GrunderU,LangNP.Themicrobiotaofosseointegratedimplantsinpatientswithahistoryofperiodontaldisease.Journalofclinicalperiodontology.1995;22(2):124-30.30. LangNP,BerglundhT,WorkingGroup4ofSeventhEuropeanWorkshoponP.Periimplantdiseases:wherearewenow?--ConsensusoftheSeventhEuropeanWorkshoponPeriodontology.Journalofclinicalperiodontology.2011;38Suppl11:178-81.31. CochranDL,NummikoskiPV,SchoolfieldJD,JonesAA,OatesTW.Aprospectivemulticenter5-yearradiographicevaluationofcrestalbonelevelsovertimein596dentalimplantsplacedin192patients.Journalofperiodontology.2009;80(5):725-33.32. KirkhamGRCS.Genesandproteinsinvolvedintheregulationofosteogenesis.AshammakhiNRR,ChielliniE,editors.,editor:Springer;2007.33. GyurkoR,ShojiH,BattaglinoRA,BoustanyG,GibsonFC,3rd,GencoCA,etal.InduciblenitricoxidesynthasemediatesbonedevelopmentandP.gingivalis-inducedalveolarboneloss.Bone.2005;36(3):472-9.34. GranchiD,OchoaG,LeonardiE,DevescoviV,BaglioSR,OsabaL,etal.Geneexpressionpatternsrelatedtoosteogenicdifferentiationofbonemarrow-derivedmesenchymalstemcellsduringexvivoexpansion.TissueengineeringPartC,Methods.2010;16(3):511-24.35. OlmedoDG,TasatDR,EvelsonP,GuglielmottiMB,CabriniRL.Biologicalresponseoftissueswithmacrophagicactivitytotitaniumdioxide.JBiomedMaterResA.2008Mar15;84(4):1087-93.PubMedPMID:17685404.36. O'Brien-SimpsonNM,BurgessK,BrammarGC,DarbyIB,ReynoldsEC.Developmentandevaluationofasaliva-basedchair-sidediagnosticforthedetectionofPorphyromonasgingivalis.Journaloforalmicrobiology.2015;7:29129.37. SchwabLP,XingZ,HastyKA,SmithRA.Titaniumparticlesandsurface-boundLPSactivatedifferentpathwaysinIC-21macrophages.JournalofbiomedicalmaterialsresearchPartB,Appliedbiomaterials.2006;79(1):66-73.38. JinS,ParkJY,HongJM,KimTH,ShinHI,ParkEK,etal.Inhibitoryeffectof(-)-epigallocatechingallateontitaniumparticle-inducedTNF-alphareleaseandinvivoosteolysis.Experimental&molecularmedicine.2011;43(7):411-8.39. HanSG,NewsomeB,HennigB.Titaniumdioxidenanoparticlesincreaseinflammatoryresponsesinvascularendothelialcells.Toxicology.2013;306:1-8.40. Montiel-DavalosA,Ventura-GallegosJL,Alfaro-MorenoE,Soria-CastroE,Garcia-LatorreE,Cabanas-MorenoJG,etal.TiO(2)nanoparticlesinducedysfunctionandactivationofhumanendothelialcells.Chemicalresearchintoxicology.2012;25(4):920-30.41. ZhangY,YuS,XiaoJ,HouC,LiZ,ZhangZ,etal.Wearparticlespromoteendotoxintoleranceinmacrophagesbyinducinginterleukin-1receptor-associatedkinase-Mexpression.JournalofbiomedicalmaterialsresearchPartA.2013;101(3):733-9.42. DiyaZ,LiliC,ShenglaiL,ZhiyuanG,JieY.Lipopolysaccharide(LPS)ofPorphyromonasgingivalisinducesIL-1beta,TNF-alphaandIL-6productionbyTHP-1

Page 62: Cindy Goes Dodo - Unicamprepositorio.unicamp.br/bitstream/REPOSIP/304942/1/Dodo_CindyGoe… · CINDY GOES DODO O efeito de partículas de titânio na osseointegração. The effect

65

cellsinawaydifferentfromthatofEscherichiacoliLPS.Innateimmunity.2008;14(2):99-107.43. IrshadM,ScheresN,CrielaardW,LoosBG,WismeijerD,LaineML.Influenceoftitaniumoninvitrofibroblast-Porphyromonasgingivalisinteractioninperi-implantitis.Journalofclinicalperiodontology.2013;40(9):841-9.44. CachinhoSC,PuF,HuntJA.Cytokinesecretionfromhumanperipheralbloodmononuclearcellsculturedinvitrowithmetalparticles.JournalofbiomedicalmaterialsresearchPartA.2013;101(4):1201-9.45. WeiS,KitauraH,ZhouP,RossFP,TeitelbaumSL.IL-1mediatesTNF-inducedosteoclastogenesis.TheJournalofclinicalinvestigation.2005;115(2):282-90.46. TrindadeMC,LindM,SunD,SchurmanDJ,GoodmanSB,SmithRL.Invitroreactiontoorthopaedicbiomaterialsbymacrophagesandlymphocytesisolatedfrompatientsundergoingrevisionsurgery.Biomaterials.2001;22(3):253-9.47. LuJ,YangZ,JiangJ,WangZ,ZhuP.RegulativeeffectofP38MAPKonreleaseofTNFalphaandNOfromalveolarmacrophagesunderendotoxinstimulation.Chinesejournaloftraumatology=Zhonghuachuangshangzazhi/ChineseMedicalAssociation.2001;4(2):75-7.48. OgawaT,UchidaH.DifferentialinductionofIL-1betaandIL-6productionbythenontoxiclipidAfromPorphyromonasgingivalisincomparisonwithsyntheticEscherichiacolilipidAinhumanperipheralbloodmononuclearcells.FEMSimmunologyandmedicalmicrobiology.1996;14(1):1-13.49. HoltSC,KesavaluL,WalkerS,GencoCA.VirulencefactorsofPorphyromonasgingivalis.Periodontology2000.1999;20:168-238.50. BalshiTJ,WolfingerGJ,SteinBE,BalshiSF.ALong-termRetrospectiveAnalysisofSurvivalRatesofImplantsintheMandible.TheInternationaljournaloforal&maxillofacialimplants.2015;30(6):1348-54.51. VandewegheS,CosynJ,ThevissenE,VandenBergheL,DeBruynH.A1-yearprospectivestudyonCo-Axisimplantsimmediatelyloadedwithafullceramiccrown.Clinicalimplantdentistryandrelatedresearch.2012;14Suppl1:e126-38.52. OhTJ,YoonJ,MischCE,WangHL.Thecausesofearlyimplantboneloss:mythorscience?Journalofperiodontology.2002;73(3):322-33.53. Galindo-MorenoP,Leon-CanoA,Ortega-OllerI,MonjeA,FOV,CatenaA.Marginalbonelossassuccesscriterioninimplantdentistry:beyond2mm.Clinicaloralimplantsresearch.2014.54. FranssonC,LekholmU,JemtT,BerglundhT.Prevalenceofsubjectswithprogressivebonelossatimplants.Clinicaloralimplantsresearch.2005;16(4):440-6.55. SennaP,AntoninhaDelBelCuryA,KatesS,MeirellesL.SurfaceDamageonDentalImplantswithReleaseofLooseParticlesafterInsertionintoBone.Clinicalimplantdentistryandrelatedresearch.2013.56. KaarSG,RagabAA,KayeSJ,KilicBA,JinnoT,GoldbergVM,etal.Rapidrepairoftitaniumparticle-inducedosteolysisisdramaticallyreducedinagedmice.Journalof

Page 63: Cindy Goes Dodo - Unicamprepositorio.unicamp.br/bitstream/REPOSIP/304942/1/Dodo_CindyGoe… · CINDY GOES DODO O efeito de partículas de titânio na osseointegração. The effect

66

orthopaedicresearch:officialpublicationoftheOrthopaedicResearchSociety.2001;19(2):171-8.57. SchwarzEM,BenzEB,LuAP,GoaterJJ,MollanoAV,RosierRN,etal.Quantitativesmall-animalsurrogatetoevaluatedrugefficacyinpreventingweardebris-inducedosteolysis.Journaloforthopaedicresearch:officialpublicationoftheOrthopaedicResearchSociety.2000;18(6):849-55.58. PapaspyridakosP,ChenCJ,SinghM,WeberHP,GallucciGO.Successcriteriainimplantdentistry:asystematicreview.Journalofdentalresearch.2012;91(3):242-8.59. FranchiM,OrsiniE,MartiniD,OttaniV,FiniM,GiavaresiG,etal.Destinationoftitaniumparticlesdetachedfromtitaniumplasmasprayedimplants.Micron.2007;38(6):618-25.60. FranchiM,BacchelliB,GiavaresiG,DePasqualeV,MartiniD,FiniM,etal.Influenceofdifferentimplantsurfacesonperi-implantosteogenesis:histomorphometricanalysisinsheep.Journalofperiodontology.2007;78(5):879-88.