caracterização dos polissacarídeos extracelulares ... · cromatografia em coluna de gel de...

34
u Caracterização dos polissacarídeos extracelulares produzidos por Chlamydomonas cf. pumilioniformis (Chlamydophyceae): identificação de frações com potencial bioatividade. Lucas da Silva Maria Orientador: Dr. Danilo Giroldo Rio Grande 2012 Universidade Federal do Rio Grande Instituto de Ciências Biológicas Pós-graduação em Biologia de Ambientes Aquáticos Continentais

Upload: nguyenkhanh

Post on 20-Nov-2018

223 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Caracterização dos polissacarídeos extracelulares ... · Cromatografia em coluna de gel de exclusão por massa molecular Sephacryl S400 Pharmacia ® dos polissacarídeos ácidos

u

CCaarraacctteerriizzaaççããoo ddooss ppoolliissssaaccaarrííddeeooss eexxttrraacceelluullaarreess

pprroodduuzziiddooss ppoorr CChhllaammyyddoommoonnaass ccff..

ppuummiilliioonniiffoorrmmiiss ((CChhllaammyyddoopphhyycceeaaee)):: iiddeennttiiffiiccaaççããoo

ddee ffrraaççõõeess ccoomm ppootteenncciiaall bbiiooaattiivviiddaaddee..

Lucas da Silva Maria

Orientador: Dr. Danilo Giroldo

Rio Grande 2012

Universidade Federal do Rio Grande Instituto de Ciências Biológicas Pós-graduação em Biologia de

Ambientes Aquáticos Continentais

Page 2: Caracterização dos polissacarídeos extracelulares ... · Cromatografia em coluna de gel de exclusão por massa molecular Sephacryl S400 Pharmacia ® dos polissacarídeos ácidos

CCaarraacctteerriizzaaççããoo ddooss ppoolliissssaaccaarrííddeeooss eexxttrraacceelluullaarreess pprroodduuzziiddooss ppoorr

CChhllaammyyddoommoonnaass ccff.. ppuummiilliioonniiffoorrmmiiss ((CChhllaammyyddoopphhyycceeaaee))::

iiddeennttiiffiiccaaççããoo ddee ffrraaççõõeess ccoomm ppootteenncciiaall bbiiooaattiivviiddaaddee..

Aluno: Lucas da Silva Maria

Orientador: Dr. Danilo Giroldo

Rio Grande 2012

Universidade Federal do Rio Grande Instituto de Ciências Biológicas

Pós-graduação em Biologia de Ambientes Aquáticos Continentais

Dissertação apresentada ao Programa

de Pós-graduação em Biologia de

Ambientes Aquáticos Continentais como

requisito parcial para a obtenção do

título de Mestre em Biologia de

Ambientes Aquáticos Continentais.

Page 3: Caracterização dos polissacarídeos extracelulares ... · Cromatografia em coluna de gel de exclusão por massa molecular Sephacryl S400 Pharmacia ® dos polissacarídeos ácidos

AGRADECIMENTOS

• Ao Prof. Dr. Danilo Giroldo, pelo inspirador exemplo de professor e pesquisador e

pela diligente e paciente orientação nesses últimos 6 anos de trabalho e convivência.

• À Universidade Federal do Rio Grande (FURG) e ao Programa de Pós

Graduação em Biologia de Ambientes Aquáticos Continentais (PPG-BAC), palcos não

só de uma formação acadêmica de excelência, mas também de lembranças que ficarão

para a vida toda.

• Ao CNPQ, pelo apoio financeiro na realização desse projeto.

• À professora Dra. Mariângela Menezes, do Museu Nacional do Rio de Janeiro,

pela identificação de Chlamydomonas cf. pumilioniformis (prestes a ser confirmada).

• Ao técnico Sr. Vanderlen e ao Prof. Dr. João Sarkis Yunes, do Instituto de

Oceanografia da FURG, pelo auxílio com a obtenção das frações extracelulares de

Chlamydomonas cf. pumilioniformis. E aos técnicos Cláudio e Leonardo, do Laboratório

de Limnologia do Instituto de Ciências Biológicas (ICB) da FURG, pela disponibilidade e

apoio em diversas atividades.

• Ao Prof. Dr. Adalto Bianchini, do ICB, pelo apoio logístico na montagem das

colunas de cromatografia.

• À Profa. Dra. Ana Baisch, à Profa. Dra. Cristiana Dora e à Msc. Marilia Garcez, do

Laboratório de Ensaios Farmacológicos e Toxicológicos (ICB), pelo contagiante

entusiasmo pela ciência, pela troca de conhecimentos e pelo apoio logístico e técnico na

obtenção das frações polissacarídicas.

• Aos componentes da banca examinadora dessa dissertação, pelas valiosas

considerações, sugestões e correções.

• Aos colegas e amigos de laboratório, especialmente Miriam, Pablo, Savênia,

Bianca e Kelen, pelas discussões científicas e filosóficas e pelas prazerosas

comemorações gastronômicas de cada conquista acadêmica.

• Ao Alan, ao Moisés, à Priscila e à Daiane, pela amizade e pelo incrível poder de

motivação.

• A toda minha família, especialmente aos meus pais, Sr. Silvio e Lúcia Maria, que

com tanto apoio, motivação e sacrifícios também merecem seus títulos acadêmicos.

• À minha noiva Raquelita, por seu amor, carinho, compreensão e encorajamento.

E pela história que ainda vamos escrever juntos.

• A Deus, por criar as microalgas, esses reatores bioquímicos fotossintetizantes

com informação suficiente para a realização de infinitas pós-graduações.

Page 4: Caracterização dos polissacarídeos extracelulares ... · Cromatografia em coluna de gel de exclusão por massa molecular Sephacryl S400 Pharmacia ® dos polissacarídeos ácidos

RESUMO

As microalgas são organismos diversificados não apenas em sua variedade de

grupos taxonômicos e habitats, mas também em sua capacidade de produzir um amplo

espectro de compostos com potencial interesse industrial e farmacológico, dentre os

quais se destacam os polissacarídeos. Este estudo objetiva caracterizar os

polissacarídeos extracelulares produzidos por Chlamydomonas cf. pumilioniformis

(Chlamydophyceae) em cultivos estanque axênicos. A espécie envolvida neste trabalho

foi isolada por micromanipulação ao microscópio do lago raso subtropical Polegar,

localizado no Campus Carreiros da Universidade Federal do Rio Grande (FURG) e está

sendo mantida na Coleção de Culturas de Microalgas Dulcícolas da FURG (CCMD-

FURG). Frações dos polissacarídeos extracelulares produzidos pela alga foram obtidas

por cromatografia em coluna de gel de troca iônica (Sepharose DEAE “Fast Flow”) e

exclusão por massa molecular (Sephacryl S400) e, posteriormente, foram

caracterizadas por cromatografia iônica de alto desempenho com detecção por

amperometria pulsada (HPIC-PAD). Foram isoladas seis frações com diferentes

composições monossacarídicas, sendo que em apenas uma, rica em glucose, ribose e

frutose, a arabinose não foi detectada. Nas outras cinco frações predominaram

arabinose, galactose e glucose em diferentes proporções. Considerando as seis

frações isoladas, também foram detectadas menores proporções de fucose, ramnose,

N-acetil-galactosamina, N-acetil-glucosamina, manose, xilose, ácido galacturônico e

ácido glucurônico, sendo que os dois últimos somaram quase 20% em uma das

frações. O elevado teor de arabinose e galactose observado na maior parte das frações

aproximam a composição destes polissacarídeos às pectinas de plantas vasculares,

que possuem reconhecidos efeitos biológicos, como antiinflamatório, imunoestimulador

e vasodilatador. Esses resultados reforçam a relação entre os efeitos biológicos de

extratos brutos de C. pumilioniormis demonstrados em experimentos anteriores

realizados com camundongos e a composição das frações polissacarídicas produzidas

por essa alga.

Palavras-chave: Volvocales, carboidratos, cromatografia, arabinose.

Page 5: Caracterização dos polissacarídeos extracelulares ... · Cromatografia em coluna de gel de exclusão por massa molecular Sephacryl S400 Pharmacia ® dos polissacarídeos ácidos

ABSTRACT

Microalgae are very diverse organisms not only in the variety of taxonomic

groups and habitats, but also in their ability of producing a wide range of compounds

with potential industrial and pharmacological applications, including polysaccharides.

This study aimed to characterize the extracellular polysaccharides produced by

Chlamydomonas cf. pumilioniformis (Chlamydophyceae) in axenic batch cultures. It was

isolated from a small subtropical shallow lake and has been maintained in the

Freshwater Microalgae Culture Collection of FURG (CCMD-FURG). Polysaccharide

fractions were obtained by ion exchange (DEAE Sepharose "Fast Flow") and size

exclusion chromatography (Sephacryl S400) and they were characterized by high

performance ion chromatography with pulsed amperometric detection (HPIC-PAD). We

isolated six fractions and only one of them, rich in glucose, ribose and fructose, was not

composed of arabinose. The five other fractions were mainly composed of arabinose,

galactose and glucose in different proportions. Considering all fractions, we also found

minor proportions of fucose, rhamnose, N-acetyl-galactosamine, N-acetyl-glucosamine,

mannose, xylose, galacturonic acid and glucuronic acid, and the two last are

responsible for 20% of one of the fractions. The high content of arabinose and

galactose make such polysaccharide similar to pectins from higher plants, which have a

well known biological effect e.g. anti-inflammatory, immunostimulatory and vasodilator.

Our results reinforce the significance of such polysaccharide composition to previously

verified biological activity in mice of C. pumilioniormis crude extract.

Key-words: Volvocales, carbohydrates, chromatography, arabinose.

Page 6: Caracterização dos polissacarídeos extracelulares ... · Cromatografia em coluna de gel de exclusão por massa molecular Sephacryl S400 Pharmacia ® dos polissacarídeos ácidos

SUMÁRIO

1) INTRODUÇÃO GERAL ............................................................................................................ 9

2) REFERÊNCIAS BIBLIOGRÁFICAS ...................................................................................... 12

3) MANUSCRITO SUBMETIDO À REVISTA JOURNAL OF APLLIED PHYCOLOGY ...... 16

4) INSTRUÇÕES DA REVISTA JOURNAL OF APPLIED PHYCOLOGY .............................. 29

5) ANEXO: MEIO WC ................................................................................................................. 34

Page 7: Caracterização dos polissacarídeos extracelulares ... · Cromatografia em coluna de gel de exclusão por massa molecular Sephacryl S400 Pharmacia ® dos polissacarídeos ácidos

LISTA DE FIGURAS

Figura 1. Frações do polissacarídeo extracelular de C. pumilioniformis isoladas pela

cromatografia de troca iônica (Sepharose “Fast Flow” Pharmacia®) e exclusão por massa

molecular (Sephacryl S400 Pharmacia®).

Figura 2. Cromatografia em coluna de gel de troca iônica DEAE-Sepharose “Fast Flow”

Pharmacia® dos polissacarídeos excretados por C. pumilioniformis, eluídos com água destilada e

NaCl 0,5 M. O fluxo foi de 0,3 mL min-1 em uma coluna de 150 mL. Ve/Vt = Volume

Eluído/Volume Total da Coluna.

Figura 3. Cromatografia em coluna de gel de exclusão por massa molecular Sephacryl S400

Pharmacia® dos polissacarídeos ácidos (0,5 M) e neutros (H2O) excretados por C.

pumilioniformis, eluídos com butanol 2%. O fluxo foi de 0,3 mL min-1 em uma coluna de 120

mL. Ve/Vt = Volume Eluído/Volume Total da Coluna. A seta vazada indica a saída do

polissacarídeo “blue dextran” (2x106 D), ao passo que a seta preenchida indica a saída do

dextran obtido de Leuconopsis spp, de massa molecular de 5x105 D.

Figura 4. Cromatogramas da análise por HPIC-PAD da composição monossacarídica das

Frações A (neutra de maior massa molecular), B (neutra de massa molecular intermediária) e C

(neutra de menor massa molecular).

Figura 5. Cromatogramas da análise por HPIC- PAD da composição monossacarídica das

Frações D (ácida de maior massa molecular), E (ácida de massa molecular intermediária) e E

(ácida de menor massa molecular).

Figura 6. Composição monossacarídica das frações polissacarídicas neutras (A, B e C) e ácidas

(D, E e F) de C. pumilioniformis. Fucose (Fuc), Ramnose (Ram), N-Acetilgalactosamina

(NAcGal), Arabinose (Ara), N-Acetilglicosamina (NAcGli), Galactose (Gal), Glicose (Gli),

Manose (Man), Xilose (Xil), Frutose (Fru), Ribose (Rib), Ácido Galacturônico (AGal) e Ácido

Glicurônico (AGli).

Page 8: Caracterização dos polissacarídeos extracelulares ... · Cromatografia em coluna de gel de exclusão por massa molecular Sephacryl S400 Pharmacia ® dos polissacarídeos ácidos

LISTA DE TABELAS

Tabela 1. Distribuição dos polissacarídeos extracelulares produzidos por C. pumilioniformis nas

frações isoladas pela cromatografia de troca iônica (Sepharose “Fast Flow” Pharmacia®) e

exclusão por massa molecular (Sephacryl S400 Pharmacia®) em massa (mg) e porcentuais (%).

Page 9: Caracterização dos polissacarídeos extracelulares ... · Cromatografia em coluna de gel de exclusão por massa molecular Sephacryl S400 Pharmacia ® dos polissacarídeos ácidos

1) INTRODUÇÃO GERAL

As microalgas são seres vivos muito diversificados que ocupam praticamente todos os tipos

de ambientes da biosfera, tais como água doce, salgada, gelo, solos, rochas e cascas de árvores,

ocorrendo nos ambientes mais extremos como regiões polares e desérticas graças às suas eficientes

adaptações morfofisiológicas. Do ponto de vista filogenético, incluem desde linhagens muito

primitivas até grupos modernos, configurando uma definição mais funcional do que propriamente

taxonômica (Van den Hoek et al 1995). Esta variedade de linhagens evolutivas, formas e

mecanismos fisiológicos faz das microalgas um grupo produtor de uma grande variedade de

compostos químicos com potencial aplicação nas indústrias alimentícia, cosmética, na produção de

energia e como fonte de substâncias com potencial aplicação farmacêutica (Olaizola 2003).

Aliada à potencialidade das microalgas como produtoras de compostos de interesse

industrial, observa-se a facilidade no isolamento de muitos destes organismos de ambientes naturais

e na sua manutenção em condições controladas de cultivo em coleções de culturas (Lourenço 2006).

Uma vez em cultivo, é possível testar condições ambientais que favoreçam o crescimento e a

produção de determinadas substâncias, bem como avançar no conhecimento genético da produção

de tais compostos (De Phillipis et al 2001). Embora o cultivo de microalgas seja uma atividade de

crescente interesse dos pesquisadores desde meados do século XX e o potencial da aplicação

biotecnológica das microalgas seja largamente reconhecido, uma porcentagem muito pequena da

biodiversidade brasileira deste grupo está sendo mantida em coleções de cultivo, já que a

quantidade de coleções bem estabelecidas no Brasil é ainda baixa (Lourenço e Vieira 2004,

Borowitzka 1995). O pouco conhecimento sobre a potencialidade da biodiversidade nacional de

microalgas dificulta a prospecção de espécies que detenham propriedades de interesse e é um

estímulo para a ampliação dos estudos de caracterização bioquímica de microalgas isoladas em

sistemas aquáticos brasileiros, com vistas à identificação de compostos com potencial aplicação

farmacológica e industrial, o que identifica as algas como um grande reservatório inexplorado de

aplicações biotecnológicas (Piccardi et al 2000).

Dentre os metabólitos produzidos pelas microalgas, destacam-se quantitativamente e

qualitativamente os polissacarídeos tanto intra como extracelulares. São compostos importantes do

ponto de vista quantitativo, pois correspondem de 40 a 90% dos compostos orgânicos produzidos

por estes organismos e qualitativamente representam um amplo espectro de compostos com

composições e massas moleculares diferenciadas (Myklestad 1995). De modo geral, podem-se

separar os polissacarídeos das microalgas em três grandes grupos: reserva, estruturais e

extracelulares. Os polissacarídeos de reserva são os principais polissacarídeos intracelulares,

geralmente formados por glucanos homogêneos, como o amido e suas variações das cianobactérias

e rodófitas, bem como a crisolaminarina (Percival 1979) típica das algas heterocontes (diatomáceas,

Page 10: Caracterização dos polissacarídeos extracelulares ... · Cromatografia em coluna de gel de exclusão por massa molecular Sephacryl S400 Pharmacia ® dos polissacarídeos ácidos

10

crisofíceas, xantofíceas e outras) e o paramilo das euglenofíceas. Os polissacarídeos estruturais,

presentes principalmente nas paredes celulares, podem variar bastante em termos de composição

dependendo do grupo taxonômico, como xilanos, mananos, ramnanos (Carlberg e Percival 1977) e

glicoproteínas variadas (Morita et al 1999), sendo um importante critério na definição de filos,

classes e ordens de microalgas (Reviers 2006). Já os polissacarídeos extracelulares, que também

podem ser bastante representativos do ponto de vista quantitativo (Paulsen e Vieira 1994), possuem

uma composição muito variável podendo formar compostos homogêneos como fucanos (Giroldo e

Vieira 2002), mananos (Vieira et al 2006), arabinogalactanos (Kiemle et al 2007), bem como

heteropolissacarídeos com 5 ou mais componentes (Giroldo e Vieira 2005). Este grupo de açúcares

é menos conhecido, tanto em termos de composição e estrutura, como de suas funções biológicas

para as próprias microalgas (Giroldo et al 2007). Embora os polissacarídeos extracelulares possam

ser produzidos especificamente por exudação (Giroldo e Vieira 2005), o conjunto dos

polissacarídeos encontrados externamente às células das microalgas sofre influência dos

polissacarídeos estruturais, que se desprendem de paredes de células vivas e mortas, bem como

daqueles de reserva que ganham o meio extracelular com a lise de células mortas.

A grande variedade de frações com diferentes massas moleculares e composições variadas

produzidas pelas inúmeras espécies de microalgas ainda não estudadas indica uma significativa

possibilidade de descoberta de compostos bioativos. Dentre os polissacarídeos frequentemente

observados em microalgas, e que potencialmente teriam atividade biológica, destacam-se os

fucanos, arabinanos, arabinogalactanos e ramnogalacturanos (Paulsen 2001).

Os fucanos são polissacarídeos ricos em fucose e têm um largo espectro de atividade

biológica, incluindo efeito anticoagulante, anti-inflamatório, imunoestimulador, anti-viral, anti-

tumoral e anti-metástase (Cumashi et al 2007). As principais fontes destes compostos são as

macroalgas pardas (Classe Phaeophyceae), particularmente das Ordens Laminariales e Fucales,

produtoras de um tipo de fucano conhecido como fucoidan, que além da alta proporção de fucose,

conta também com alto grau de sulfatação. Também diversos grupos de invertebrados marinhos,

como as holotúrias, produzem fucanos bioativos, porém em quantidades bem inferiores às

macroalgas (Motohiro 1960). Além destes organismos, diversas espécies de microalgas produzem

fucanos com potencial bioatividade, porém os testes para comprovar a real atividade destes

compostos isolados de microalgas são ainda bastante raros. Uma cepa da cianobactéria

Synechocystis aquatilis apresentou uma produção de um polissacarídeo sulfatado rico em fucose e

arabinose com atividade anticoagulante (Volk et al 2006). Cryptomonas obovata, Cryptomonas

tetrapyrenoidosa (Cryptophyceae), Thalassiosira duostra (Bacillariophyceae), Staurastrum

orbiculare (Zygnematophyceae) e Onychonema sp. também são exemplos de microalgas dulcícolas

produtoras de polissacarídeos ricos em fucose com potencial bioatividade ainda inexplorada

Page 11: Caracterização dos polissacarídeos extracelulares ... · Cromatografia em coluna de gel de exclusão por massa molecular Sephacryl S400 Pharmacia ® dos polissacarídeos ácidos

11

(Giroldo e Vieira 2002, Giroldo 2003, Giroldo et al 2005 a e b, Maria et al 2011).

Os arabinanos, arabinogalactanos e ramnogalacturanos são freqüentemente associados a

uma classe de compostos denominada pectinas, que podem variar muito em termos de composição,

mas têm como característica marcante a presença de arabinose, galactose, ramnose e ácido

galacturônico. Tanto pectinas neutras, como os arabinanos e os arabinogalactanos, quanto ácidas,

como os ramnogalacturanos, têm reconhecida bioatividade, principalmente anti-inflamatória e

imunoestimuladora (Paulsen 2001). Estes compostos são muito freqüentes em plantas de uso

medicinal, sendo um dos alvos principais da farmacognosia. Plantas vasculares como Biophytum

petersianum e Panax ginseng têm sido usadas em tratamentos relacionados ao sistema imune, assim

como dores nas juntas, inflamações e malária, e sua atividade tem sido relacionada a polissacarídeos

pécticos, como ramnogalacturanos e arabinogalactanos (Inngjerdingen et al 2008, Yu et al 2010).

Diversas espécies de algas, principalmente as mais próximas filogeneticamente dos vegetais

superiores, apresentam pectinas na parede celular (Domozych et al 2007). Por outro lado, outras

microalgas verdes apresentam parede celular e polissacarídeos extracelulares com características

semelhantes às pectinas, como as “pherophorins”, glicoproteínas que formam o envelope celular

típico das Ordens Volvocales e Chlamydomonadales (Morita et al 1999). A atividade

imunoestimuladora de Chlorella (Chlorococcales) é diretamente relacionada à presença de

polissacarídeos ricos em arabinanos, ramnanos e galactanos neste gênero (Kralovec et al 2007,

Suárez et al 2008), evidenciando as algas verdes como fontes naturais, além de facilmente

cultiváveis, de polímeros bioativos ricos em arabinose, galactose e ácido galacturônico. Em outro

exemplo, polissacarídeos são também responsáveis pela atividade imunoestimulatória de

RespondinTM, um imunoestimulante desenvolvido pela Ocean Nutrition Canada Ltd a partir de

extratos celulares de C. pyrenoidosa, dos quais Suárez et al (2005) isolaram um arabinogalactano.

Um estudo realizado com extratos brutos celulares e extracelulares de C. pumilioniformis

indicou efeito analgésico e anti-inflamatório bastante significativo em ambos os extratos com

inibição da resposta à dor superior às obtidas para morfina e efeito anti-inflamatório semelhante ao

diclofenaco (Andrade 2010). Análises da composição de polissacarídeos celulares e extracelulares

produzidos por C. pumilioniformis já foram realizadas em trabalhos de conclusão de curso e

dissertações de mestrado desenvolvidas em nosso laboratório (Maria et al 2011) e apontaram

polissacarídeos com potencial bioatividade ricos em arabinose, galactose e ácido galacturônico,

porém realizados em culturas não axênicas e sem o fracionamento e a caracterização mais detalhada

dos mesmos.

O objetivo deste trabalho foi isolar e caracterizar a composição monossacarídica de

diferentes frações dos polissacarídeos extracelulares produzidos por culturas axênicas de C.

pumilioniformis, com vistas à identificação de frações potencialmente bioativas.

Page 12: Caracterização dos polissacarídeos extracelulares ... · Cromatografia em coluna de gel de exclusão por massa molecular Sephacryl S400 Pharmacia ® dos polissacarídeos ácidos

12

2) REFERÊNCIAS BIBLIOGRÁFICAS

Andrade A (2010) Investigação das atividades antiinflamatória e antinociceptiva dos extratos da

micro alga Chlamydomonas sp. Dissertação. Universidade Federal do Rio Grande

Borowitzka MA (1995) Microalgae as sources of pharmaceuticals and other biologically-active

compounds. Journal of Applied Phycology 7:3-15

Carlberg GE, Percival E (1977) Carbohydrates of green seaweeds belonging to genus Urospora. 2.

Carbohydrates of green seaweeds Urospora wormskioldii and Codiolum pusillum. Carbohydrate

Research 57:223-234

Cumashi A, Ushakova NA et al (2007) A comparative study of the anti-inflammatory, anticoagulant,

antiangiogenic, andantiadhesive activities of nine different fucoidans from brown seaweeds

Glycobiology 17:541–552

Daus S, Petzold‐Welcke K et al (2011) Homogeneous Sulfation of Xylan from Different Sources.

Macromolecular Materials and Engineering 296:6-551

De Phillipis R, Sili C et al (2001) Exopolysaccharide-producing cyanobacteria and their possible

exploitation: A review. Journal of Applied Phycology 13:293-299

Ding X, Hou YL, Hou WR (2012) Structure feature and antitumor activity of a novel

polysaccharide isolated from Lactarius deliciosus Gray. Carbohydrate Polymers 89(2):397-402

Domozych DS, Domozych CR (1993) Mucilage processing and secretion in the green alga

Closterium. Parte 2: ultrastructure ans imunocytochemystry. Journal of Phycology 29(5):659-667

Domozych DS, Elliott L, Kiemle SN (2007) Pleurotaenium trabecula, a desmid of wetland

biofilms: The extracellular matrix and adhesion mechanisms. Journal of Phycology 43, 1022-1038

Dubois M et al (1956) Colorimetric method for determination of sugars and related substances.

Analytical Chemistry 28:350-356

Giroldo D (2003) Especificidade em associações alga/bactéria vinculadas aos carboidratos

excretados por três espécies fitoplanctônicas de um reservatório tropical eutrófico do Estado de São

Paulo (Barra Bonita). Dissertação. Universidade Federal de São Carlos

Giroldo D, Vieira AAH (2002) An extracellular sulphated fucose-rich polysaccharides produced by

a tropical strain of C. obovata (Cryptophyceae). Journal of Applied Phycology 14:185-191

Giroldo D, Vieira AAH (2005) Polymeric and free sugars released by three phytoplanktonic species

from a freshwater tropical eutrophic reservoir. Journal of Plankton Research 27:695-705

Giroldo D, Vieira AAH, Paulsen BS (2003) Relative increase of deoxy sugars during microbial

degradation of an extracellular polysaccharide released by a tropical freshwater Thalassiosira sp.

(Bacillariophyceae). Journal of Phycology 39:1109-1115

Giroldo D, Vieira AAH, Paulsen BS (2005a) Extracellular polysaccharides produced by a tropical

Page 13: Caracterização dos polissacarídeos extracelulares ... · Cromatografia em coluna de gel de exclusão por massa molecular Sephacryl S400 Pharmacia ® dos polissacarídeos ácidos

13

cryptophyte as a carbon source for natural bacterial populations. European Journal of Phycology

40:241-249

Giroldo D, Vieira AAH, Paulsen BS (2005b) Microbial degradation of extracellular polysaccharides

released by a tropical strain of Staurastrum orbiculare (Zygnematophyceae). Phycologia 44:671-

677

Giroldo D, Ortolano PIC, Vieira AAH (2007) Bacteria–algae association in batch cultures of from a

tropical reservoir: the significance of algal carbohydrates. Freshwater Biology 52:1281-1289

Gouvêa SP, Vieira A AH, Lombardi AT (2002) No effect of N or P deficiency on capsule in

Staurodesmus converens (Zygnematophyceae, Chlorophyta). Phycologia 41:585-589

Gremm TJ, Kaplan TJ (1997) Dissolved carbohydrates in streamwater determined by HPIC-PAD

and pulse amperometric detection. Limnology and Oceanography 42:385-393

Gronhaug TE, Ghildyal P et al (2010) Bioactive arabinogalactans from the leaves of Opilia

celtidifolia Endl. ex Walp. (Opiliaceae) Glycobiology 20(12):1654-664

Guillard RRL, Lorenzen CJ (1972) Yellow-green algae with chlorophyllide c. Journal of Phycology

8:10-14

Guimarães P (2011) Relações Entre Fitoplâncton, Bacterioplâncton e Características da Água em

um Ambiente Subtropical do Extremo Sul do Brasil (Lagoa Mirim). Dissertação. Universidade

Federal do Rio Grande

Inngjerdingen M, Inngjerdingen KT et al (2008) Pectic polysaccharides from Biophytum

petersianum Klotzsch, and their activation of macrophages and dendritic cells. Glycobiology

18:1074-1084

Jorgensen NOG, Jensen RE (1994) Microbial fluxes of free monosaccharides and total

carbohydrates in freshwater determined by HPLC-PAD. Microb. Ecol. 14:79-94

Kiemle SN, Domozych DS, Gretz MR (2007) The extracellular polymeric substances of desmids

(Conjugatophyceae, Streptophyta): chemistry, structural analyses and implications in wetland

biofilms. Phycologia 46:617-627

Kralovec JA, Metera KL et al (2007) Immunostimulatory principles from Chlorella pyrenoidosa -

Part 1: Isolation and biological assessment in vitro. Phytomedicine 14:57-64

Lourenço SO (2006) Cultivo de microalgas marinhas: princípios e aplicações. RIMA, São Carlos

Lourenço SO, Vieira AAH (2004) Culture collections of microalgae in Brazil: progress and

constraints. Nova Hedwigia 79(1-2):149-173

Maria L, Giroldo D, Vieira AAH (2011) Phytoplankton from subtropical ponds: growth parameters,

carbohydrate production, and polysaccharide composition of three chlorophytes. In: Ponds,

Formation, Characteristhics and Uses. Meyer, P (ed) NovaScience, 2011. p.103-124

Mopper K, Schultz CA et al (1992) Determination of sugar in unconcentrated seawater and other

Page 14: Caracterização dos polissacarídeos extracelulares ... · Cromatografia em coluna de gel de exclusão por massa molecular Sephacryl S400 Pharmacia ® dos polissacarídeos ácidos

14

natural water byliquid chromatography pulse amperometric detection. Environ. Sci. Technol.

26:133-38

Morita E, Abe T et al (1999) Role of pyrenoids in the CO2 – concentrating mechanism: comparative

morphology, physiology and molecular phylogenetic analysis of closely related strains of

Chlamydomonas and Chloromonas (Volvocales). Planta 208:365-372

Motohiro T (1960) Studies on the mucoprotein in marine products. I. Isolation of mucoprotein from

the meats of Stickopus japonica and Cucumaria japonica. II. Iolation of poly-fucose sulfate from

the mucoprotein in Cucumaria japonica. III. Crystalisation of itin sulfate from the mucoprotein in

Cucumaria japonica. Bull. Jap. Soc. Sci. Fish. 26:1171-82

Myklestad SM (1995) Release of extracellular products by phytoplankton with special emphasis on

polysaccharides. The Science of Total Environment 165:155-164

Olaizola M (2003) Commercial development of microalgal biotechnology: from the test tube to the

marketplace. Biomolecular Engineering 20:459-466

Paulsen BS (2001) Plant polysaccharides with immunostimulatory activities. Current Organic

Chemistry 5:939-950

Paulsen BS, Barsett H (2005) Bioactive pectic polysaccharydes. In: Polysaccharydes 1: structure,

characterization and use. In: Advances in Polymer Science.186:69-101

Paulsen BS, Vieira AAH (1994) Structural studies on extracellular dissolved and capsular

polysaccharides produced by Spondylosium panduriforme Journal of Phycology 30:638-641

Percival E (1979) Polysaccharides of green, red and brown seaweeds - their basic structure,

biosynthesis and function. British Phycological Journal 14:103-117

Pharmacia (1991) Ion exchange Chromatography: principles and methods. ISBN 91970490-3-4.

Piccardi R et al (2000) Bioactivity in free-living and symbiotic cyanobacteria of the genus Nostoc.

Journal of Applied Phycology 12:543-547

Reviers B (2006) Biologia e filogenia das algas. Artmed, Porto Alegre

Suárez ER, Kralovec JA (2005) Isolation, characterization and structural determination of a unique

type of arabinogalactan from an immunostimulatory extract of Chlorella pyrenoidosa.

Carbohydrate Research 340:1489–1498

Suárez ER (2008) First isolation and structural determination of cyclic b-(1→2)-glucans from an

alga, Chlorella pyrenoidosa. Carbohydrate Research 343:2623–2633

Van den Hoek C, Mann DG, Jahns HM (1995) Algae: an introduction to phycology. Cambridge

University Press, Cambridge

Vieira AAH (1983) Purification of phytoplankton cultures with Dakin solution. Rev. Microbiol.

14(3):202-203

Vieira AAH, Giroldo D, Ortolano PIC (2006) Aggregate formation in axenic and microbial co-

Page 15: Caracterização dos polissacarídeos extracelulares ... · Cromatografia em coluna de gel de exclusão por massa molecular Sephacryl S400 Pharmacia ® dos polissacarídeos ácidos

15

inoculated batch cultures of Aulacoseira granulata (Bacillariophyceae). Acta Limnologica

Brasiliensia 18:1-7

Volk RB, Venzke K, Blaschek W, Alban S (2006) Complement modulating and anticoagulant

effects of a sulfated exopolysaccharide released by the cyanobacterium Synechocystis aquatilis.

Planta Medica 72:1424-1427

Wang YF, Yu L, Wei XL (2012). Monosaccharide composition and bioactivity of tea flower

polysaccharides obtained by ethanol fractional precipitation and stepwise precipitation. Cyta-

Journal Of Food. 10(1):1-4

Wicks RJ et al (1991) Carbohydrates signatures of macrophytes and their dissolved degradation

products as determined by a sensitive high-performed ion chromatography method. Applied

Environmental Microbiology 57:3135-3143

Yamada H, Kiyohara H (2007) Immunomodulating activity of plant polysaccha-ride structures. In:

Kamerling J, (ed) Comprehensive Glycoscience – From Chemistry to Systems Biology. Oxford,

Elsevier. p.663–694.

Yu L, Zhang X et al (2010) Rhamnogalacturonan I domains from ginseng pectin. Carbohydrate

Polymers 79:811-817

Page 16: Caracterização dos polissacarídeos extracelulares ... · Cromatografia em coluna de gel de exclusão por massa molecular Sephacryl S400 Pharmacia ® dos polissacarídeos ácidos

16

3) MANUSCRITO SUBMETIDO À REVISTA JOURNAL OF APLLIED PHYCOLOGY

Lucas da Silva Maria¹ • Danilo Giroldo²* Extracellular polysaccharides produced by Chlamydomonas cf. pumilioniformis (Chlamydophyceae): identification of potentially bioactive fractions. 1,2- Laboratório de Botânica Criptogâmica, Instituto de Ciências Biológicas, Universidade Federal do Rio Grande - FURG, Rio Grande, RS, 96203-900, Brasil. 1- [email protected] 2- [email protected], 021 53 84246125 * Corresponding Author

Page 17: Caracterização dos polissacarídeos extracelulares ... · Cromatografia em coluna de gel de exclusão por massa molecular Sephacryl S400 Pharmacia ® dos polissacarídeos ácidos

17

Abstract Microalgae are very diverse organisms which occupy several habitats and produce a wide range of

compounds with potential application, including polysaccharides. This study aimed to characterize the extracellular

polysaccharides produced by Chlamydomonas cf. pumilioniformis (Chlamydophyceae) in axenic batch cultures. It was

isolated from a small subtropical shallow lake and it has been maintained in the microalgal culture collection of the

Institute of Biological Sciences at the Federal University of Rio Grande, RS, Brazil. Polysaccharide fractions were

obtained by ion exchange (DEAE Sepharose "Fast Flow") and size exclusion chromatography (Sephacryl S400) and

they were characterized by high performance ion chromatography with pulsed amperometric detection (HPIC-PAD).

We isolated six fractions and only in one of them, rich in glucose, ribose and fructose, arabinose was not found. The

five other fractions were mainly composed of arabinose, galactose and glucose in different proportions. Considering all

fractions, we also found minor proportions of fucose, rhamnose, N-acetyl-galactosamine, N-acetyl-glucosamine,

mannose, xylose, galacturonic acid and glucuronic acid. The high content of arabinose and galactose make such

polysaccharides similar to pectins from higher plants, which have a well known biological effect e.g. anti-inflammatory,

immunostimulatory and vasodilator. Our results reinforce the significance of such polysaccharide composition to

previously verified biological activity in mice of C. pumilioniformis crude extract.

Key-words Volvocales, carbohydrates, chromatography, arabinose.

Page 18: Caracterização dos polissacarídeos extracelulares ... · Cromatografia em coluna de gel de exclusão por massa molecular Sephacryl S400 Pharmacia ® dos polissacarídeos ácidos

18

Introduction

Microalgae produce a large variety of biochemical compounds with potential biotechnology applications in the food,

cosmetic and pharmaceutical industries, as well as in energy production (Olaizola 2003). Among the phytoplankton

metabolites, polysaccharides are significant since they represent 40% to 90% of the organic compounds produced by

these organisms and exhibit a wide range of structures and compositions (Myklestad 1995).

The production of both intra and extracellular polysaccharides is a ubiquitous phytoplanktonic process

(Paulsen and Vieira, 1994). Most of intracellular polysaccharides play storage and structural roles. The first are usually

composed of homogeneous glucans, such as starch, chrysolaminarin and paramylon (Percival 1979, Bäumer et al.

2001), while the latter are also largely homogenous, especially the cell wall constituents such as xylans, mannans,

rhamnans (Carlberg and Percival, 1977, Hoek et al. 1995). On the other hand, extracellular polysaccharides (EPS) could

be homogeneous compounds, such as fucans (Giroldo and Vieira 2002), mannans (Vieira et al. 2006), and

arabinogalactans (Kiemle et al. 2007), or very heterogeneous compounds with five or more different monosaccharides

(Giroldo and Vieira 2005). EPS have been less studied than structural and storage polysaccharides with regard to their

composition and structure and their biological functions (Giroldo et al. 2007).

Microalgae are able to produce pectic polysaccharides with biological activity, which are characterized by the

presence of arabinose, galactose, rhamnose and uronic acids (Paulsen 2001, Gronhaug 2010). Both the neutral pectins,

such as arabinans and arabinogalactans, and the acid pectins, such as ramnogalacturans, are very frequent in medicinal

plants, being one of the main interests of pharmacognosy. Vascular plants such as Biophytum petersianum and Panax

ginseng have been used in immune system related treatments, e.g. joint paints, inflammation and malaria, and their

activity has been related to acid and neutral pectic polysaccharides (Inngjerdingen et al. 2008, Yu et al. 2010).

Several green algae show pectins in their cell wall composition, especially those closer to higher plants

(Domozych et al. 2007). For instance, Chlamydomonadales have pherophorins attached to their cell wall, which are

pectic glycoproteins of the extracellular matrix (Morita et al. 1999, Hallman 2006). Also the immunostimulatory

activity of Chlorella spp. (Chlorococcales) is related to the presence of pectic polysaccharides in this gender (Kralovec

et al. 2007, Suárez et al. 2008). Such characteristics make green algae a natural and easily cultivable source of bioactive

polymers rich in arabinose, galactose and galacturonic acid. Suárez et al. (2005) have isolated an arabinogalactan from

RespondinTM, an immunostimulant developed by Ocean Nutrition Canada Ltd from cellular material of Chlorella

pyrenoidosa.

A previous study performed with crude cellular and extracellular extracts of Chlamydomonas cf.

pumilioniformis has indicated strong antinociceptive and antiinflamatory effects in both extracts (Andrade 2010). Also

Maria et al. (2011) identified the production of polysaccharides rich in arabinose, galactose and galacturonic acid in

non-axenic C. pumilioniformis cultures, however without a more detailed characterization of such compounds. The aim

of this study was to isolate and characterize the different fractions of extracellular polysaccharides produced by axenic

cultures of C. pumilioniformis, for the identification of potentially bioactive ones.

Material and Methods

Organisms and culture conditions

Chlamydomonas cf. pumilioniformis L. Petérfi was isolated directly on the microscope from a subtropical shallow pond

(Polegar Pond, surface area of 10,000 m2) located in the Carreiros campus of the Federal University of Rio Grande, Rio

Grande, RS, Brazil. The cultures were grown in WC medium (Guillard and Lorenzen, 1972), under 100 µmol m2 s1

(photosynthetically active radiation), with a 10:14 h dark : light cycle and a temperature of 22°C ±1°C, in the

microalgal culture collection of the Institute of Biological Sciences at the Federal University of Rio Grande, RS, Brazil.

Page 19: Caracterização dos polissacarídeos extracelulares ... · Cromatografia em coluna de gel de exclusão por massa molecular Sephacryl S400 Pharmacia ® dos polissacarídeos ácidos

19

Axenic cultures of were obtained by washing the cultures with Dakin solution (Vieira, 1983), followed by several re-

isolations. Bacterial contamination tests were conducted regularly with WC medium plus glucose and peptone at the

concentration of 250 mg L-1 each.

Exopolysaccharides isolation and characterization

A 9 L C. pumilioniformis culture in the stationary growth phase (40 d, 6 x 106 cells ml-1) was centrifuged (15 min at

4000 rpm). The extracellular material was filtered with fiber glass filters 3 (Macherey-Nagels, Düren, Germany) and

concentrated to 250 mL in a rotary evaporator at 40 °C, before being dialyzed against distilled water in dialysis tubes

with a 12-14 kD molecular weight cut-off. The dialyzed material was liofilized and stored at -4°C.

The freeze-dried material was further separated by anion exchange and size exclusion column chromatography

and the monosaccharide composition of the fractions was determined by high performance ion chromatography with

pulse amperometric detection (HPIC-PAD) as described below. The anion exchange column chromatography was

performed using the batch separation method, without gradient, under the following conditions: gel = Sepharose DEAE

fast flow (Pharmacia, Peapack, NJ, USA), eluent I = distilled water, eluent II = 0.5M NaCl, eluent III = 1.0M NaCl, and

eluent IV = 2.0M NaCl, running at the ambient temperature. Sodium azide (1 g L-1) was used to avoid bacterial

contamination. The column was first regenerated with 2.0M NaCl and washed with distilled water. The sample was

applied and eluted with distilled water to obtain the neutral fraction. Elution with 0.5M NaCl then yielded the weak acid

fraction, and finally elution with 1.0M NaCl was used to obtain the strong acid fraction. The size exclusion

chromatography was performed using the gel Sephacryl S-400 (Pharmacia, Peapack, NJ, USA) and butanol 2% as

eluent, with a load volume of 5% of the total volume of the column. The column was calibrated using dextrans of 5x105

and 2x106 D. For both chromatographic techniques, the flow rate was of 0.3 mL min -1 and carbohydrates were detected

in the 2-mL fractions by the phenol-sulfuric method (Dubois et al. 1956). The fractions with significant amount of

carbohydrates were pooled, dialyzed against distilled water, and freeze dried. After hydrolysis (Gremm and Kaplan

1997) the HPIC-PAD analyses were performed on a Dionex® ICS3000 device (Sunnyvale, CA, EUA) equipped with

PA-1 (Dionex) a anion-exchange analytical column (2 x 250 mm) with a corresponding guard-column (2 x 50 mm). The

eluent used for the separation of the monosaccharides was NaOH 18 mM, with 200 mM NaOH for column

recuperation, at a flow rate of 0.25 mL min -1 (Gremm and Kaplan 1997).

Results

Figure 1 shows two fractions of the EPS released by C. pumilioniformis obtained by anion exchange chromatography

using DEAE Sepharose gel. The neutral fraction, eluted by distilled water, and the acid fraction, eluted by 0.5M NaCl,

corresponded to 54.1% and 45.8% of the originally injected material. Figure 3 shows the molecular weight distribution

of the EPS of C. pumilioniformis obtained by size exclusion chromatography using Sephacryl S-400 gel. The arrow

shows a peak of dextran 5 x 105 D (Ve.Vt-1 = 0.19). Three neutral fractions were obtained, A (Ve.Vt-1 = 0.16 to 0.6), B

(0.62 to 0.69) and C (0.71 to 0.92), besides three acid fractions, D (0.45 to 0.62), E (0.63 to 0.77) and F (0.78 to 0.92).

Table 1 shows the recuperated fractions and percentages in relation to the original 40 mg of polysaccharide.

Fraction A was the most representative, corresponding to 38.7% of the total polysaccharide, followed in by fractions D

(21%), E (17%), C (8.7%), F (7.9%) and B (6.7%). The three neutral fractions of the polysaccharide are essentially

composed of arabinose, galactose and glucose (Figure 3).

Fraction A was mainly composed by arabinose (53.8%) and galactose (21.2%), with small amounts of

rhamnose, glucose, mannose and xylose. Fraction B also presented high percentages of arabinose (30%) and galactose

(13%), although it was mainly composed by glucose (45.5%). Fraction C presented the same profile as fraction B, but

Page 20: Caracterização dos polissacarídeos extracelulares ... · Cromatografia em coluna de gel de exclusão por massa molecular Sephacryl S400 Pharmacia ® dos polissacarídeos ácidos

20

with different quantities of the three main monosaccharides (arabinose – 31%, galactose – 18%, glucose – 35%). No

uronic acids were detected on these neutral fractions and we found three unidentified monosaccharides, with retention

times between fucose and rhamnose. Fraction D is a very heterogeneous polysaccharide, rich in arabinose (27%) and

galactose (13%), also containing significant amounts of mannose, xylose, glucose and rhamnose, as well as minor

amounts of fucose, N-acetyl-glucosamine and galacturonic and glucuronic acids. Fraction E has a more homogeneous

profile, composed of arabinose and galactose in higher amounts (25% each), followed by glucose and xylose (12.3%)

and minor amounts of fucose, rhamnose, mannose and uronic acids (never exceeding 7%). Also several unidentified

acids similar to the uronic acids were observed. Fraction F is very homogeneous, with a composition dominated by

glucose (56.9%) and ribose (18.9%), containing small amounts of arabinose, galactose and fructose and no uronic acids.

Discussion

This study confirms and expands the knowledge on the EPS of C. pumilioniformis, which presented five

polysaccharidic fractions rich in arabinose and galactose, with minor proportions of rhamnose, fucose, mannose and

xylose, as well as uronic acids. Polysaccharides such as the produced by C. pumilioniformes are similar to pectins

produced by vascular plants, which include arabinogalactans tipe I and tipe II, differentiated by the location of the

linkage or ramification carbon. In a study with leaf polysaccharides of the african Opilia celtidifolia, commonly used

for wound healing, Gronhaug et al. (2010) isolated eight acid fractions of pectic polysaccharides with

immunostimulatory activity. Such results indicate that the biological effect of the extracellular medium of C.

pumilioniformis in mice, demonstrated by Andrade (2010), may be related to the pectic composition of the

polysaccharides excreted by the algae. The results of Gronhaug et al. (2010) are not only similar to ours in the presence

of arabinogalactans and ramnogalacturans, but also in the fact that these polysaccharides present various

arabinose:galactose:rhamnose ratios, which shows the variety of pectic polysaccharides that can be produced by both

vascular plants and algae.

Although Paulsen and Barsett (2005) indicate that most bioactive pectic polysaccharides are charged due to the

presence of uronic acids, Yamada e Kiyohara (1999) isolated from Bupleurum falcatum a neutral pectic polysaccharide

with immunostimulatory activity. Those results show that the neutral fractions we found in C. pumilioniformis can be

promising compounds to pharmacological prospection.

The acid polysaccharide fraction D isolated in this study showed a very heterogeneous composition, which

indicates the efficiency of the hydrolytic extraction of its monosaccharides, as well as a complexity-based potential for

bioactivity. On the other hand, the larger proportion of this fraction (38.9%), as well as its wide spread peak, indicate

the need for further purification of this polysaccharide, using different chromatographic conditions. The acidic

characteristic of this fraction is confirmed by the presence of galacturonic and glucuronic acids in significant amounts

(9% and 10%, respectively). Uronic acids have negative charge and a well known potential for metal complexation

(Gouvêa et al. 2005), which may be another biotechnological potential of the polysaccharides of C. pumilioniformis.

Fraction E showed smaller amounts of galacturonic and glucuronic acids than fraction D, nevertheless it showed peaks

adjacent to these acids, whose identification may be further performed by comparison with other acids commonly found

in microalgae, such as the mannuronic acid.

Fraction F was highly homogeneous, being composed in more than 75% of glucose and ribose, and may be

originated from the intracellular material of the algae. A previous study (Maria 2011) showed that glucose is the most

abundant monosaccharide in the interior of the cell of three algae, including C. pumilioniformis. Furthermore, previous

data suggests that the presence of ribose is an indication of cellular decomposition (Veuger et al 2012). Although this

fraction was obtained by elution with NaCl 0.5M, which characterizes it as an acid fraction, no acid sugar had been

Page 21: Caracterização dos polissacarídeos extracelulares ... · Cromatografia em coluna de gel de exclusão por massa molecular Sephacryl S400 Pharmacia ® dos polissacarídeos ácidos

21

found nd probably sch acid feature was given by another radical, such as sulfate.

In conclusion, axenic cultures of C. pumilioniformis produced five different polysaccharide fractions with

pectic composition, which indicate them as a source of bioactive compounds with pharmacological interest.

Furthermore, the microalga presents a uronic acid rich polysaccharide with the potential biotechnological application of

metal complexation.

References

Andrade A (2010) Investigação das atividades antiinflamatória e antinociceptiva dos extratos da microalga

Chlamydomonas sp. Dissertation, Universidade Federal do Rio Grande – FURG

Bäumer D, Preisfeld A, Ruppel HG (2001) Isolation and characterization of paramylon synthase from Euglena gracilis

(Euglenophyceae). J Phycol 37:38-46

Carlberg GE, Percival E (1977) Carbohydrates of green seaweeds Urospora wormskioldii and Codiolum pusillum.

Carbohyd Res 57:223-234

Domozych DS, Domozych CR (1993) Mucilage processing and secretion in the green alga Closterium. J Phycol

29:659-667

Domozych DS, Elliott L, Kiemle SN (2007) Pleurotaenium trabecula, a desmid of wetland biofilms: The extracellular

matrix and adhesion mechanisms. J Phycol 43:1022-1038

Dubois M, Guilles KA, Hamilton JK, Rebers PA, Smiths F (1956) Colorimetric method for determination of sugars and

related substances. Anal Chem 28:350-356

Giroldo D (2003) Especificidade em associações alga/bactéria vinculadas aos carboidratos excretados por três espécies

fitoplanctônicas de um reservatório tropical eutrófico do Estado de São Paulo (Barra Bonita). Dissertation,

Universidade Federal de São Carlos

Giroldo D, Vieira AAH (2002) An extracellular sulphated fucose-rich polysaccharides produced by a tropical strain of

C. obovata (Cryptophyceae). J Appl Phycol 14:185-191

Giroldo D, Vieira AAH (2005) Polymeric and free sugars released by three phytoplanktonic species from a freshwater

tropical eutrophic reservoir. J Plankton Res 27:695-705

Giroldo D, Vieira AAH, Paulsen BS (2003) Relative increase of deoxy sugars during microbial degradation of an

extracellular polysaccharide released by a tropical freshwater Thalassiosira sp. (Bacillariophyceae). J Phycol 39:1109-

1115

Giroldo D, Ortolano PIC, Vieira AAH (2007) Bacteria–algae association in batch cultures of from a tropical reservoir:

the significance of algal carbohydrates. Freshwater Biol 52:1281-1289

Gouvêa SP, Vieira A AH, Lombardi AT (2002) No effect of N or P deficiency on capsule in Staurodesmus converens

(Zygnematophyceae, Chlorophyta). Phycologia 41:585-589

Gremm TJ, Kaplan TJ (1997) Dissolved carbohydrates in streamwater determined by HPIC-PAD and pulse

amperometric detection. Limnol Oceanogr 42:385-393

Gronhaug TE et al. (2010) Bioactive arabinogalactans from the leaves of Opilia celtidifolia Endl. ex Walp. (Opiliaceae)

Glycobiology 20, 12:1654-664

Guillard RRL, Lorenzen CJ (1972) Yellow-green algae with chlorophyllide c. J Phycol 8:10-14

Hallman A (2006) The pherophorins: common, versatile building blocks in the evolution of extracellular matrix

architecture in Volvocales. Plant J 45:292-307

Hoek C, Mann DG, Jahns HM (1995) Algae: an introduction to phycology. Cambridge University Press, Cambridge

Page 22: Caracterização dos polissacarídeos extracelulares ... · Cromatografia em coluna de gel de exclusão por massa molecular Sephacryl S400 Pharmacia ® dos polissacarídeos ácidos

22

Inngjerdingen M, Inngjerdingen KT et al. (2008) Pectic polysaccharides from Biophytum petersianum Klotzsch, and

their activation of macrophages and dendritic cells. Glycobiology 18:1074-1084

Jorgensen NOG, Jensen RE (1994) Microbial fluxes of free monosaccharides and total carbohydrates in freshwater

determined by HPLC-PAD. Microbial Ecol 14:79-94

Kiemle SN, Domozych DS, Gretz MR (2007) The extracellular polymeric substances of desmids (Conjugatophyceae,

Streptophyta): chemistry, structural analyses and implications in wetland biofilms. Phycologia, 46:617-627

Kralovec JA et al. (2007) Immunostimulatory principles from Chlorella pyrenoidosa. Phytomedicine, 14: 57-64

Maria L, Giroldo D, Vieira AAH (2010) Phytoplankton from subtropical ponds: growth parameters, carbohydrate

production, and polysaccharide composition of three chlorophytes. In: Meyer PL (ed) Ponds, Formation,

Characteristhics and Uses. NovaScience, New York, pp 103-124

Mopper K, Schultz CA, Chevolot L, Germain C, Revuelta R, Dawson R (1992) Determination of sugar in

unconcentrated seawater and other natural water byliquid chromatography pulse amperometric detection. Environ Sci

Technol 26:133-38

Morita E, Abe T et al. (1999) Role of pyrenoids in the CO2 – concentrating mechanism: comparative morphology,

physiology and molecular phylogenetic analysis of closely related strains of Chlamydomonas and Chloromonas

(Volvocales). Planta 208:365-372

Myklestad SM (1995) Release of extracellular products by phytoplankton with special emphasis on polysaccharides. Sci

Total Environ 165:155-164

Olaizola M (2003) Commercial development of microalgal biotechnology: from the test tube to the marketplace.

Biomol Eng 20:459-466

Paulsen BS (2001) Plant polysaccharides with immunostimulatory activities. Curr Org Chem 5:939-950

Paulsen BS, Barsett H (2005) Bioactive pectic polysaccharydes. In: Heinze T (ed) Polysaccharydes 1: structure,

characterization and use. Springer-Verlag, Berlin, 186:69-101

Paulsen BS, Vieira AAH (1994) Structural studies on extracellular dissolved and capsular polysaccharides produced by

Spondylosium panduriforme. J Phycol 30:638-641

Percival E (1979) Polysaccharides of green, red and brown seaweeds - their basic structure, biosynthesis and function.

Brit Phycol J 14:103-117

Pharmacia (1991) Ion exchange Chromatography: principles and methods. ISBN 9197049034

Piccardi R, Frosini A, Tredici MR, Margheri MC (2000) Bioactivity in free-living and symbiotic cyanobacteria of the

genus Nostoc. J Appl Phycol 12:543-547

Suárez ER, Kralovec JA et al. (2005) Isolation, characterization and structural determination of a unique type of

arabinogalactan from an immunostimulatory extract of Chlorella pyrenoidosa. Carbohyd Res 340:1489–1498

Suárez ER, Bugden SM et al. (2008) First isolation and structural determination of cyclic b-(1→2)-glucans from an

alga, Chlorella pyrenoidosa. Carbohyd Res 343:2623–2633

Veuger B, Oevelen D, Middelburg JJ (2012) Fate of microbial nitrogen, carbon, hydrolysable amino acids,

monosaccharides, and fatty acids in sediment. Geochim Cosmochim Ac 83 217–233

Vieira AAH (1983) Purification of phytoplankton cultures with Dakin solution. Rev Microbiol 14:202-203

Vieira AAH, Giroldo D, Ortolano PIC (2006) Aggregate formation in axenic and microbial co-inoculated batch cultures

of Aulacoseira granulata (Bacillariophyceae). Acta Limnol Bras 18:1-7

Wicks RJ, Moran MA, Pittman LJ, Hodson RE (1991) Carbohydrates signatures of macrophytes and their dissolved

degradation products as determined by a sensitive high-performed ion chromatography method. Appl Environ Microb

Page 23: Caracterização dos polissacarídeos extracelulares ... · Cromatografia em coluna de gel de exclusão por massa molecular Sephacryl S400 Pharmacia ® dos polissacarídeos ácidos

23

57:3135- 3143

Yamada H, Kiyohara H (2007) Immunomodulating activity of plant polysaccharide structures. In: Kamerling JP (ed).

Comprehensive Glycoscience–From Chemistry to Systems Biology. Oxford, Elsevier

Yu L, Zhang X et al. (2010) Rhamnogalacturonan I domains from ginseng pectin. Carbohyd Polym 79:811-817

Table 1. Distribution of the extracellular polysaccharide fractions produced by C. pumilioniformis isolated by anion

exchange chromatography (Sepharose “Fast Flow” Pharmacia®) and size exclusion chromatography (Sephacryl S400

Pharmacia®).

Fraction Mass (mg) %

A 15,48 38,7

B 2,69 6,7

C 3,49 8,7

D 8,38 21

E 6,79 17

F 3,16 7,9

Total 40 mg 100%

Page 24: Caracterização dos polissacarídeos extracelulares ... · Cromatografia em coluna de gel de exclusão por massa molecular Sephacryl S400 Pharmacia ® dos polissacarídeos ácidos

24

0,0 0,2 0,4 0,6 0,8 1,0

0,00

0,02

0,04

0,06

0,08

0,10

0,12

0,14

0,16

0,0 0,2 0,4 0,6 0,8 1,0

0,00

0,02

0,04

0,06

0,08

0,10

0,12

0,14

0,16

Ve.Vt-1

H20

0,5 M

Ab

so

rban

ce

Figure 1. DEAE Sepharose (Pharmacia®) gel column ion exchange chromatography of the polysaccharides released by

C. pumilioniformis. The eluents used were distilled water and 0,5 M NaCl. Ve.Vt-1 = eluted volume divided by total

column volume.

Page 25: Caracterização dos polissacarídeos extracelulares ... · Cromatografia em coluna de gel de exclusão por massa molecular Sephacryl S400 Pharmacia ® dos polissacarídeos ácidos

25

0,0 0,2 0,4 0,6 0,8 1,0

0,00

0,01

0,02

0,03

0,04

0,0 0,2 0,4 0,6 0,8 1,0

0,00

0,01

0,02

0,03

0,04

a b

ba

Ve.Vt-1

F

DE

BC

A

0,5 M

H2O

A

bso

rban

ce

Figure 2.

Sephacryl S400 (Pharmacia®) gel size exclusion chromatography of the acid (0.5 M) and neutral (H2O) polysaccharides

released by C. pumilioniformis The arrow (a) indicates a peak of dextran 2x106 D. The arrow (b) indicates a peak of

dextran 5x105 D. Ve.Vt-1 = eluted volume divided by total column volume.

Page 26: Caracterização dos polissacarídeos extracelulares ... · Cromatografia em coluna de gel de exclusão por massa molecular Sephacryl S400 Pharmacia ® dos polissacarídeos ácidos

26

Figure 3. High performance ion chromatography with pulse amperometric detection (HPIC-PAD) of the neutral

polysaccharide fractions A, B and C produced by C. pumilioniformis.

Page 27: Caracterização dos polissacarídeos extracelulares ... · Cromatografia em coluna de gel de exclusão por massa molecular Sephacryl S400 Pharmacia ® dos polissacarídeos ácidos

27

Figura 4. High performance ion chromatography with pulse amperometric detection (HPIC-PAD) of the acid

polysaccharide fractions D, E and F produced by C. pumilioniformis.

Page 28: Caracterização dos polissacarídeos extracelulares ... · Cromatografia em coluna de gel de exclusão por massa molecular Sephacryl S400 Pharmacia ® dos polissacarídeos ácidos

28

0

20

40

60

C

B

A

0

20

40

60

fuc

rha

Ng

al

ara

Ng

lug

al

glu

man

xyl

fru

rib

ag

al

ag

lu

0

20

40

60

0

20

40

60

F

E

D

0

20

40

60

fuc

rha

Ng

al

ara

Ng

lug

al

glu

man

xyl

fru

rib

ag

al

ag

lu

0

20

40

60

Figure 5. Monosaccharide percentual composition of the neutral (A, B and C) and acid (D, E and F) polysaccharide

fractions of C. pumilioniformis. fuc = Fucose, rha = Rhamnose, Nagal = N-Acetil-galactosamine, ara = Arabinose,

Naglu = N-Acetil-glicosamine, gal = Galactose, glu = Glicose, man = Mannose, xyl = Xilose, fru = Fructose, rib =

Ribose, agal = Galacturonic Acid, aglu = Glucuronic Acid.

Page 29: Caracterização dos polissacarídeos extracelulares ... · Cromatografia em coluna de gel de exclusão por massa molecular Sephacryl S400 Pharmacia ® dos polissacarídeos ácidos

29

4) INSTRUÇÕES DA REVISTA JOURNAL OF APPLIED PHYCOLOGY

Manuscript Submission Submission of a manuscript implies: that the work described has not been published before; that it is not under consideration for publication anywhere else; that its publication has been approved by all co-authors, if any, as well as by the responsible authorities – tacitly or explicitly – at the institute where the work has been carried out. The publisher will not be held legally responsible should there be any claims for compensation.

Permissions Authors wishing to include figures, tables, or text passages that have already been published elsewhere are required to obtain permission from the copyright owner(s) for both the print and online format and to include evidence that such permission has been granted when submitting their papers. Any material received without such evidence will be assumed to originate from the authors.

Online Submission Authors should submit their manuscripts online. Electronic submission substantially reduces the editorial processing and reviewing times and shortens overall publication times. Please follow the hyperlink “Submit online” on the right and upload all of your manuscript files following the instructions given on the screen.

Title Page The title page should include:

• The name(s) of the author(s) • A concise and informative title • The affiliation(s) and address(es) of the author(s)

The e-mail address, telephone and fax numbers of the corresponding author

Abstract Please provide an abstract of 150 to 250 words. The abstract should not contain any undefined abbreviations or unspecified references.

Keywords Please provide 4 to 6 keywords which can be used for indexing purposes.

Text Formatting Manuscripts should be submitted in Word.

• Use a normal, plain font (e.g., 10-point Times Roman) for text. • Use italics for emphasis. • Use the automatic page numbering function to number the pages. • Do not use field functions. • Use tab stops or other commands for indents, not the space bar. • Use the table function, not spreadsheets, to make tables. • Use the equation editor or MathType for equations. • Save your file in docx format (Word 2007 or higher) or doc format (older Word versions). • Word template (zip, 154 kB)

Manuscripts with mathematical content can also be submitted in LaTeX. • LaTeX macro package (zip, 182 kB)

Headings Please use no more than three levels of displayed headings.

Page 30: Caracterização dos polissacarídeos extracelulares ... · Cromatografia em coluna de gel de exclusão por massa molecular Sephacryl S400 Pharmacia ® dos polissacarídeos ácidos

30

Abbreviations Abbreviations should be defined at first mention and used consistently thereafter.

Footnotes Footnotes can be used to give additional information, which may include the citation of a reference included in the reference list. They should not consist solely of a reference citation, and they should never include the bibliographic details of a reference. They should also not contain any figures or tables. Footnotes to the text are numbered consecutively; those to tables should be indicated by superscript lower-case letters (or asterisks for significance values and other statistical data). Footnotes to the title or the authors of the article are not given reference symbols. Always use footnotes instead of endnotes.

Acknowledgments Acknowledgments of people, grants, funds, etc. should be placed in a separate section before the reference list. The names of funding organizations should be written in full. References

Citation Cite references in the text by name and year in parentheses. Some examples:

• Negotiation research spans many disciplines (Thompson 1990). • This result was later contradicted by Becker and Seligman (1996). • This effect has been widely studied (Abbott 1991; Barakat et al. 1995; Kelso and Smith

1998; Medvec et al. 1999).

Reference list The list of references should only include works that are cited in the text and that have been published or accepted for publication. Personal communications and unpublished works should only be mentioned in the text. Do not use footnotes or endnotes as a substitute for a reference list. Reference list entries should be alphabetized by the last names of the first author of each work.

• Journal article Gamelin FX, Baquet G, Berthoin S, Thevenet D, Nourry C, Nottin S, Bosquet L (2009) Effect of high intensity intermittent training on heart rate variability in prepubescent children. Eur J Appl Physiol 105:731-738. doi: 10.1007/s00421-008-0955-8 Ideally, the names of all authors should be provided, but the usage of “et al” in long author lists will also be accepted: Smith J, Jones M Jr, Houghton L et al (1999) Future of health insurance. N Engl J Med 965:325–329

• Article by DOI • Slifka MK, Whitton JL (2000) Clinical implications of dysregulated cytokine production. J

Mol Med. doi:10.1007/s001090000086 • Book • South J, Blass B (2001) The future of modern genomics. Blackwell, London • Book chapter • Brown B, Aaron M (2001) The politics of nature. In: Smith J (ed) The rise of modern

genomics, 3rd edn. Wiley, New York, pp 230-257 • Online document • Cartwright J (2007) Big stars have weather too. IOP Publishing PhysicsWeb.

http://physicsweb.org/articles/news/11/6/16/1. Accessed 26 June 2007 • Dissertation

Page 31: Caracterização dos polissacarídeos extracelulares ... · Cromatografia em coluna de gel de exclusão por massa molecular Sephacryl S400 Pharmacia ® dos polissacarídeos ácidos

31

• Trent JW (1975) Experimental acute renal failure. Dissertation, University of California • Always use the standard abbreviation of a journal’s name according to the ISSN List of Title

Word Abbreviations, see • www.issn.org/2-22661-LTWA-online.php • For authors using EndNote, Springer provides an output style that supports the formatting of

in-text citations and reference list. • EndNote style (zip, 3 kB)

Tables

• All tables are to be numbered using Arabic numerals. • Tables should always be cited in text in consecutive numerical order. • For each table, please supply a table caption (title) explaining the components of the table. • Identify any previously published material by giving the original source in the form of a

reference at the end of the table caption. • Footnotes to tables should be indicated by superscript lower-case letters (or asterisks for

significance values and other statistical data) and included beneath the table body. Artwork and illustrations guidelines For the best quality final product, it is highly recommended that you submit all of your artwork – photographs, line drawings, etc. – in an electronic format. Your art will then be produced to the highest standards with the greatest accuracy to detail. The published work will directly reflect the quality of the artwork provided.

Electronic Figure Submission • Supply all figures electronically. • Indicate what graphics program was used to create the artwork. • For vector graphics, the preferred format is EPS; for halftones, please use TIFF format. MS

Office files are also acceptable. • Vector graphics containing fonts must have the fonts embedded in the files. • Name your figure files with "Fig" and the figure number, e.g., Fig1.eps.

Line Art • Definition: Black and white graphic with no shading. • Do not use faint lines and/or lettering and check that all lines and lettering within the figures

are legible at final size. • All lines should be at least 0.1 mm (0.3 pt) wide. • Scanned line drawings and line drawings in bitmap format should have a minimum

resolution of 1200 dpi. • Vector graphics containing fonts must have the fonts embedded in the files.

Halftone Art • Definition: Photographs, drawings, or paintings with fine shading, etc. • If any magnification is used in the photographs, indicate this by using scale bars within the

figures themselves. • Halftones should have a minimum resolution of 300 dpi.

Combination Art • Definition: a combination of halftone and line art, e.g., halftones containing line drawing,

extensive lettering, color diagrams, etc. • Combination artwork should have a minimum resolution of 600 dpi.

Page 32: Caracterização dos polissacarídeos extracelulares ... · Cromatografia em coluna de gel de exclusão por massa molecular Sephacryl S400 Pharmacia ® dos polissacarídeos ácidos

32

Color Art • Color art is free of charge for online publication. • If black and white will be shown in the print version, make sure that the main information

will still be visible. Many colors are not distinguishable from one another when converted to black and white. A simple way to check this is to make a xerographic copy to see if the necessary distinctions between the different colors are still apparent.

• If the figures will be printed in black and white, do not refer to color in the captions. • Color illustrations should be submitted as RGB (8 bits per channel).

Figure Lettering • To add lettering, it is best to use Helvetica or Arial (sans serif fonts). • Keep lettering consistently sized throughout your final-sized artwork, usually about 2–3 mm

(8–12 pt). • Variance of type size within an illustration should be minimal, e.g., do not use 8-pt type on

an axis and 20-pt type for the axis label. • Avoid effects such as shading, outline letters, etc. • Do not include titles or captions within your illustrations.

Figure Numbering • All figures are to be numbered using Arabic numerals. • Figures should always be cited in text in consecutive numerical order. • Figure parts should be denoted by lowercase letters (a, b, c, etc.). • If an appendix appears in your article and it contains one or more figures, continue the

consecutive numbering of the main text. Do not number the appendix figures, "A1, A2, A3, etc." Figures in online appendices (Electronic Supplementary Material) should, however, be numbered separately.

Figure Captions

• Each figure should have a concise caption describing accurately what the figure depicts. Include the captions in the text file of the manuscript, not in the figure file.

• Figure captions begin with the term Fig. in bold type, followed by the figure number, also in bold type.

• No punctuation is to be included after the number, nor is any punctuation to be placed at the end of the caption.

• Identify all elements found in the figure in the figure caption; and use boxes, circles, etc., as coordinate points in graphs.

• Identify previously published material by giving the original source in the form of a reference citation at the end of the figure caption.

Figure Placement and Size

• When preparing your figures, size figures to fit in the column width. • For most journals the figures should be 39 mm, 84 mm, 129 mm, or 174 mm wide and not

higher than 234 mm. • For books and book-sized journals, the figures should be 80 mm or 122 mm wide and not

higher than 198 mm.

Permissions If you include figures that have already been published elsewhere, you must obtain permission from the copyright owner(s) for both the print and online format. Please be aware that some publishers do not grant electronic rights for free and that Springer will not be able to refund any costs that may have occurred to receive these permissions. In such cases, material from other sources should be used.

Page 33: Caracterização dos polissacarídeos extracelulares ... · Cromatografia em coluna de gel de exclusão por massa molecular Sephacryl S400 Pharmacia ® dos polissacarídeos ácidos

33

Accessibility In order to give people of all abilities and disabilities access to the content of your figures, please make sure that

• All figures have descriptive captions (blind users could then use a text-to-speech software or a text-to-Braille hardware)

• Patterns are used instead of or in addition to colors for conveying information (color-blind users would then be able to distinguish the visual elements)

• Any figure lettering has a contrast ratio of at least 4.5:1 Fonte: Journal of Applied Phycology – Instructions for Authors.

http://www.springer.com/life+sciences/plant+sciences/journal/10811 Último Acesso: 8-7-2012.

Page 34: Caracterização dos polissacarídeos extracelulares ... · Cromatografia em coluna de gel de exclusão por massa molecular Sephacryl S400 Pharmacia ® dos polissacarídeos ácidos

34

5) ANEXO: MEIO WC

pH 7,0 ± 0,5 (Guillard & Lorenzen, 1972) 1. CaCl2 36,8 g/L 1 mL/L 2. MgSO4 37 g/L 1 mL/L 3. NaHCO3 12,6 g/L 1 mL/L 4. NaSiO3 28,4 g/L 1 mL/L 5. K2HPO4 8,7 g/L 1 mL/L 6. NaNO3 85 g/L 1 mL/L 7. Micronutrientes 1 mL/L

Na2EDTA 4,36 g/L FeCl3 3,15 g/L CuSO4 0,01 g/L ZnSO4 0,022 g/L CoCl2 0,01 g/L MnCl2 0,018 g/L Na2MoO4 0,0006 g/L H3BO3 0,1 g/L

8. Vitaminas 1 mL/L

Tiamina 0,1 g/L Biotina 0,0005 g/L B12 0,0005 g/L

No “WC P+G”, adicionam-se 250 mg L-1 de peptona e 250 mg L-1 de glicose.