caderno matematica - rosane de fátima worm

60
Caderno de Matemática Dom Alberto Prof: Rosane de Fátima Worm C iências ontábeis ADMINISTRAÇÃO

Upload: marluci-galindo

Post on 28-Oct-2015

512 views

Category:

Documents


14 download

TRANSCRIPT

Page 1: Caderno Matematica - Rosane de Fátima Worm

Caderno de MatemáticaDom Alberto

Prof: Rosane de Fátima Worm

Ciênciasontábeis

ADMINISTRAÇÃO

Page 2: Caderno Matematica - Rosane de Fátima Worm

C122 WORM, Rosane de Fátima

Caderno de Matemática Dom Alberto / Rosane de Fátima Worm. – Santa Cruz do Sul: Faculdade Dom Alberto, 2010.

Inclui bibliografia.

1. Administração – Teoria 2. Ciências Contábeis – Teoria 3. Matemática – Teoria I. WORM, Rosane de Fátima II. Faculdade Dom Alberto III. Coordenação de Administração IV. Coordenação de Ciências Contábeis V. Título

CDU 658:657(072)

Catalogação na publicação: Roberto Carlos Cardoso – Bibliotecário CRB10 010/10

Página 2

Page 3: Caderno Matematica - Rosane de Fátima Worm

Apresentação O Curso de Administração da Faculdade Dom Alberto iniciou sua

trajetória acadêmica em 2004, após a construção de um projeto pautado na importância de possibilitar acesso ao ensino superior de qualidade que, combinado à seriedade na execução de projeto pedagógico, propiciasse uma formação sólida e relacionada às demandas regionais.

Considerando esses valores, atividades e ações voltadas ao ensino sólido viabilizaram a qualidade acadêmica e pedagógica das aulas, bem como o aprendizado efetivo dos alunos, o que permitiu o reconhecimento pelo MEC do Curso de Administração em 2008.

Passados seis anos, o curso mostra crescimento quantitativo e qualitativo, fortalecimento de sua proposta e de consolidação de resultados positivos, como a publicação deste Caderno Dom Alberto, que é o produto do trabalho intelectual, pedagógico e instrutivo desenvolvido pelos professores durante esse período. Este material servirá de guia e de apoio para o estudo atento e sério, para a organização da pesquisa e para o contato inicial de qualidade com as disciplinas que estruturam o curso.

A todos os professores que com competência fomentaram o Caderno Dom Alberto, veículo de publicação oficial da produção didático-pedagógica do corpo docente da Faculdade Dom Alberto, um agradecimento especial.

Lucas Jost

Diretor Geral

Página 3

Page 4: Caderno Matematica - Rosane de Fátima Worm

PREFÁCIO

A arte de ensinar e aprender pressupõe um diálogo entre aqueles que

interagem no processo, como alunos e professores. A eles cabe a tarefa de

formação, de construção de valores, habilidades, competências necessárias à

superação dos desafios. Entre estes se encontra a necessidade de uma

formação profissional sólida, capaz de suprir as demandas de mercado, de

estabelecer elos entre diversas áreas do saber, de atender às exigências legais

de cada área de atuação, etc.

Nesse contexto, um dos fatores mais importantes na formação de um

profissional é saber discutir diversos temas aos quais se aplicam

conhecimentos específicos de cada área, dispondo-se de uma variedade ampla

e desafiadora de questões e problemas proporcionada pelas atuais

conjunturas. Para que isso se torne possível, além da dedicação daqueles

envolvidos no processo de ensino-aprendizagem, é preciso haver suporte

pedagógico que dê subsídios ao aprender e ao ensinar. Um suporte que

supere a tradicional metodologia expositiva e atenda aos objetivos expressos

na proposta pedagógica do curso.

Considerando esses pressupostos, a produção desse Caderno Dom

Alberto é parte da proposta pedagógica do curso da Faculdade Dom Aberto.

Com este veículo, elaborado por docentes da instituição, a faculdade busca

apresentar um instrumento de pesquisa, consulta e aprendizagem teórico-

prática, reunindo materiais cuja diversidade de abordagens é atualizada e

necessária para a formação profissional qualificada dos alunos do curso.

Ser um canal de divulgação do material didático produzido por

professores da instituição é motivação para continuar investindo da formação

qualificada e na produção e disseminação do que se discute, apresenta, reflete,

propõe e analisa nas aulas do curso. Espera-se que os leitores apreciem o

Caderno Dom Alberto com a mesma satisfação que a Faculdade tem em

elaborar esta coletânea.

Elvis Martins

Diretor Acadêmico de Ensino

Página 4

Page 5: Caderno Matematica - Rosane de Fátima Worm

Sumário

Apresentação

Prefácio

Plano de Ensino

Aula 1

Aula 2

Aula 3

Aula 4

Aula 5

Aula 6

Aula 7

Aula 8

Aula 9

Aula 10

Aula 11

Aula 12

Equações

Funções

Alguns tipos de função

Modelos de funções

Restrição orçamentária

Caracterização geral de uma função de 1º grau

Exercícios

Limites e Continuidades

Propriedades dos limites

Derivadas: conceitos básicos

Derivadas fundamentais

Aplicações das derivadas nas áreas Econômicas e Administrativa

11

14

19

24

29

32

35

38

45

48

53

56

6

4

3

Página 5

Page 6: Caderno Matematica - Rosane de Fátima Worm

Missão: "Oferecer oportunidades de educação, contribuindo para a formação de profissionais conscientes e competentes, comprometidos com o comportamento ético e visando ao desenvolvimento regional”.

Centro de Ensino Superior Dom Alberto

Plano de Ensino

Identificação Curso: Administração/Ciências Contábeis Disciplina: Matemática

Carga Horária (horas): 60 Créditos: 4 Semestre: 1º

Ementa Funções. Equações de Oferta e Demanda. Ponto de Equilíbrio de Mercado. Funções de Custo, Receita e Lucro. Juros Simples e Compostos como Funções. Limites e Continuidade. Derivadas. Aplicações de Derivadas na Economia (Custo, Receita e Lucro). Integrais Indefinidas e Definidas. Aplicações de Integral na Economia.

Objetivos Geral: Desenvolver a capacidade de o aluno utilizar a Matemática Aplicada como instrumento de novas aprendizagens e como meio de interpretação da realidade. Ampliar as capacidades de raciocínio, de resolução de problemas, de comunicação e de rigor, bem como o espírito crítico e a criatividade. Utilizar, com confiança, a resolução de problemas para compreender e investigar conceitos matemáticos aplicados. Incentivar a realização pessoal, o desenvolvimento de atitudes, de autonomia e cooperação e o sentimento de segurança em relação às próprias capacidades matemáticas. Desenvolver atitudes positivas em relação à Matemática Aplicada, como autonomia, confiança quanto às capacidades matemáticas, perseverança na resolução de problemas e prazer no trabalho. Específicos: Levar o aluno a: Estabelecer conexões e integração entre diferentes temas matemáticos e entre esses temas e outras áreas do currículo, tais como funções, limites, derivadas e integrais. Analisar e interpretar criticamente dados provenientes de problemas matemáticos, de outras áreas do conhecimento e do cotidiano, como equações e aplicações de derivadas na economia. Aplicar seus conhecimentos matemáticos nas atividades econômicas, financeiras, administrativas, tecnológicas e na interpretação da ciência.

Inter-relação da Disciplina Horizontal: Contribuir para o desenvolvimento cognitivo interdisciplinar, promovendo um ensino voltado a uma formação sólida e ampla, tendo como foco principal as exigências da vida social e profissional. Vertical: As aplicações da disciplina são processadas de forma a adaptar o conhecimento teórico a uma situação prática e ajustada à realidade.

Competências Gerais Desenvolver a capacidade de utilizar a Matemática Aplicada como instrumento de novas aprendizagens e como meio de interpretação da realidade. Ampliar as capacidades de raciocínio de resolução de problemas, de comunicação e de rigor, bem como o espírito crítico e a criatividade. Utilizar, com confiança, a resolução de problemas para compreender e investigar conceitos matemáticos aplicados.

Competências Específicas Estabelecer conexões e integração entre diferentes temas matemáticos e entre esses temas e outras áreas do currículo tais como funções, limites, derivadas e integrais. Analisar e interpretar criticamente dados provenientes de problemas matemáticos, de outras áreas do conhecimento e do cotidiano, como equações e aplicações de derivadas na economia. Aplicar seus conhecimentos matemáticos nas atividades econômicas, financeiras, administrativas, tecnológicas e na interpretação da ciência.

Habilidades Gerais Página 6

Page 7: Caderno Matematica - Rosane de Fátima Worm

Missão: "Oferecer oportunidades de educação, contribuindo para a formação de profissionais conscientes e competentes, comprometidos com o comportamento ético e visando ao desenvolvimento regional”.

Reconhecer e definir problemas, equacionar soluções, pensar estrategicamente, desenvolver o raciocínio lógico, crítico e criativo diante dos diferentes contextos organizacionais e sociais.

Habilidades Específicas Ler, interpretar, reconhecer e resolver problemas sobre funções, limites, derivadas e integrais, visando o desenvolvimento de atitudes de autonomia.

Conteúdo Programático PROGRAMA: 1. Funções 1.1. Idéia intuitiva 1.2. Conceito matemático 1.3. Função demanda 1.4. Função oferta 1.5. Função utilidade 1.6. Funções de custo 1.7. Função receita 1.8. Função lucro 1.9. Curva do orçamento 1.10. Curva de possibilidade de produção 1.11. Outros modelos 1.12. Características das funções 2. Limites 2.1. Idéia intuitiva 2.2. Definição 2.3. Limites de polinômios e funções racionais 2.4. Limite no infinito 2.5. Esboço de curvas 2.6. Problemas 3. Derivadas 3.1. Derivada como medida de inclinação 3.2. Derivada como taxa de variação 3.3. Problemas de maximização/minimização 3.4. Regras de derivação 3.5. Aplicações da derivada à economia 4. Noção de integral 4.1. Integral indefinida 4.2. Área e integral definida 4.3. Aplicações aos negócios e à economia

Estratégias de Ensino e Aprendizagem (metodologias de sala de aula) O planejamento do trabalho em sala de aula é à base da construção do processo de ensino e aprendizagem. Planejando a ação, o professor tem a possibilidade de saber exatamente qual o ponto de partida e o de chegada para cada tema abordado em seu curso. Um planejamento não é um esquema de trabalho rígido, inflexível. Pelo contrário, devem-se levar em conta as situações inesperadas que vão ocorrendo e adaptar ou modificar o que se havia inicialmente previsto, de acordo com suas observações de classe e necessidades dos alunos. Há metas que devem ser estabelecidas e alcançadas, sendo necessário que o professor disponha de um fio condutor para a ação que vai desenvolver e de uma previsão para os resultados dessa ação.

Avaliação do Processo de Ensino e Aprendizagem A avaliação do processo de ensino e aprendizagem deve ser realizada de forma contínua, cumulativa e sistemática com o objetivo de diagnosticar a situação da aprendizagem de cada aluno, em relação à programação curricular. Funções básicas: informar sobre o domínio da aprendizagem, indicar os efeitos da metodologia utilizada, revelar conseqüências da atuação docente, informar sobre a adequabilidade de currículos e programas, realizar feedback dos objetivos e planejamentos elaborados, etc. A forma de avaliação será da seguinte maneira: Página 7

Page 8: Caderno Matematica - Rosane de Fátima Worm

Missão: "Oferecer oportunidades de educação, contribuindo para a formação de profissionais conscientes e competentes, comprometidos com o comportamento ético e visando ao desenvolvimento regional”.

1ª Avaliação – Peso 8,0 (oito): Prova; – Peso 2,0 (dois): Trabalho referente ao conteúdo ministrado até a 1a

2ª Avaliação avaliação.

- Peso 8,0 (oito): Prova; - Peso 2,0 (dois): referente ao Sistema de Provas Eletrônicas – SPE (maior nota das duas

provas do SPE)

Observação: As provas do SPE deverão ser realizas até o dia 30/09/2010 (1ª prova SPE) e até o dia 30/11/2010 (2ª prova SPE), sendo obrigatória a realização de ao menos uma prova.

Avaliação Somativa A AFERIÇÃO DO RENDIMENTO ESCOLAR DE CADA DISCIPLINA É FEITA ATRAVÉS DE NOTAS INTEIRAS DE ZERO A DEZ, PERMITINDO-SE A FRAÇÃO DE 5 DÉCIMOS. O aproveitamento escolar é avaliado pelo acompanhamento contínuo do aluno e dos resultados por ele obtidos nas provas, trabalhos, exercícios escolares e outros, e caso necessário, nas provas substitutivas. Dentre os trabalhos escolares de aplicação, há pelo menos uma avaliação escrita em cada disciplina no bimestre. O professor pode submeter os alunos a diversas formas de avaliações, tais como: projetos, seminários, pesquisas bibliográficas e de campo, relatórios, cujos resultados podem culminar com atribuição de uma nota representativa de cada avaliação bimestral. Em qualquer disciplina, os alunos que obtiverem média semestral de aprovação igual ou superior a sete (7,0) e freqüência igual ou superior a setenta e cinco por cento (75%) são considerados aprovados. Após cada semestre, e nos termos do calendário escolar, o aluno poderá requerer junto à Secretaria-Geral, no prazo fixado e a título de recuperação, a realização de uma prova substitutiva, por disciplina, a fim de substituir uma das médias mensais anteriores, ou a que não tenha sido avaliado, e no qual obtiverem como média final de aprovação igual ou superior a cinco (5,0).

Sistema de Acompanhamento para a Recuperação da Aprendizagem Serão utilizados como Sistema de Acompanhamento e Nivelamento da turma os Plantões Tira-Dúvidas que são realizados sempre antes de iniciar a disciplina, das 18h30min às 18h50min, na sala de aula.

Recursos Necessários Humanos

Professor. Físicos

Laboratórios, visitas técnicas, biblioteca, etc. Materiais

Recursos Multimídia.

Bibliografia

Básica GUIDORIZZI, Hamilton Luiz. Um curso de cálculo. 5. ed. Rio de Janeiro: LTC, 2001. 1 v. HOFFMANN, Laurence; BRADLEY, Gerald. Cálculo: um curso moderno e suas aplicações. Rio de Janeiro: LTC, 1996. SILVA, Sebastião Medeiros da. Matemática: para os cursos de: economia, administração, ciências contábeis. 2. ed. São Paulo: Atlas, 1997. LEITHOLD, L.. Matemática aplicada à economia e administração. 2. ed. São Paulo: Harbra, 2001. VERAS, Lilia L. Matemática aplicada à economia: Síntese da Teoria. São Paulo: Atlas, 1991.

Complementar ANTON, Howard. Cálculo: um novo horizonte. 6. ed. Porto Alegre: Bookmann, 2000. 1 v. AVILA, Geraldo. Cálculo das funções de uma variável. 7. ed. São Paulo: LTC, 2003. 1 v. BARBANTI, L. Matemática Superior: um primeiro curso de cálculo. São Paulo: Pioneira, 1999. AYRES JUNIOR, Frank; Elliott Mendelson. Cálculo diferencial e integral 3. ed. São Paulo: Pearson, 1994.

Página 8

Page 9: Caderno Matematica - Rosane de Fátima Worm

Missão: "Oferecer oportunidades de educação, contribuindo para a formação de profissionais conscientes e competentes, comprometidos com o comportamento ético e visando ao desenvolvimento regional”.

GOLDSTEIN, L.; LAY, D.; SCHENEIDER, D. Matemática aplicada. São Paulo: Bookman, 2003.

Periódicos

Revistas: Você S/A, Exame, Isto é.

Sites para Consulta http://www.mec.gov.br http://www.ime.usp.br http://www.mat.ufrgs.br/~edumatec http://sites.uol.com.br/vello/aulas.htm

Outras Informações Endereço eletrônico de acesso à página do PHL para consulta ao acervo da biblioteca: http://192.168.1.201/cgi-bin/wxis.exe?IsisScript=phl.xis&cipar=phl8.cip&lang=por

Página 9

Page 10: Caderno Matematica - Rosane de Fátima Worm

Missão: "Oferecer oportunidades de educação, contribuindo para a formação de profissionais conscientes e competentes, comprometidos com o comportamento ético e visando ao desenvolvimento regional”.

Cronograma de Atividades

Aula Consolidação Avaliação Conteúdo Procedimentos Recursos

Apresentação aos alunos do plano de ensino da disciplina. Revisão de conceitos básicos da Matemática. Idéia intuitiva de função. Conceito matemático de função.

AE QG, DS

2ª Atividades Envolvendo Funções matemáticas. Introdução a Modelos aplicados. AE QG, DS

3ª Funções (oferta e demanda). Problemas envolvendo funções. AE QG, DS

4ª Funções (custo, utilidade, lucro). Características de funções. AE QG, DS

5ª Construção de tabelas e gráficos de funções. Plotar gráficos de funções. AE QG, DS

6ª Análise e interpretação de curvas de orçamento e produção. AE QG, DS

7ª Problemas envolvendo outros modelos de funções. AE QG, DS

1 Consolidação 1

1 Avaliação 1

8ª Limites. Idéia intuitiva. Definição. AE QG, DS

9ª Continuidade. Limites de funções. Propriedades algébricas do limites. Limite no infinito. Problemas envolvendo limites. Derivadas. Conceitos básicos.

AE QG, DS

10ª Regras de derivação. Problemas utilizando as regras. AE QG, DS

11ª Problemas de maximização / minimização. Trabalho aplicado. AE QG, DS

12ª Aplicações de derivadas a economia. Noções de integral. AE QG, DS

13ª Integral definida e indefinida. Aplicações de integrais aos negócios. AE QG, DS

2 Consolidação 2

2 Avaliação 2

3 Avaliação Substitutiva

Legenda Código Descrição Código Descrição Código Descrição AE Aula expositiva QG Quadro verde e giz LB Laboratório de informática TG Trabalho em grupo RE Retroprojetor PS Projetor de slides TI Trabalho individual VI Videocassete AP Apostila SE Seminário DS Data Show OU Outros PA Palestra FC Flipchart

Página 10

Page 11: Caderno Matematica - Rosane de Fátima Worm

[Digite texto]

CENTRO DE ENSINO SUPERIOR DOM ALBERTO

Aula 1 – Matemática Aplicada – 04/08/10 Profª Rosane Worm

EQUAÇÕES Uma solução para uma equação em x é um valor de x para a qual a equação é verdadeira.

Resolver uma equação em x significa encontrar todos os valores de x para os quais a equação é

verdadeira. Isto é, encontrar todas as soluções da equação.

Verificação de uma solução:

Prove que x = -2 é uma solução da equação x3 – x + 6 = 0

Equações lineares com uma variável A equação mais básica na álgebra é uma equação linear.

Uma equação linear em x é aquela que pode ser escrita na forma ax + b = 0, onde a e b são

números reais com a ≠ 0.

Resolução de uma equação linear:

a) 2( 2x – 3) + 3(x + 1) = 5x + 2 b) 5y – 2 = 2 + y 8 4 Solução de uma equação por meio de gráficos O gráfico da equação y = 2x -5 pode ser usado para resolver a equação 2x – 5 = 0

Portanto o par ordenado (5/2, 0) é a solução de y = 2x – 5, pois sugere que o ponto por onde a

reta intercepta o eixo x seja o par ordenado (5/2, 0).

Equações quadráticas Equações lineares ( ax + b = 0) e equações quadráticas (ax2

Os métodos mais utilizados na resolução de uma equação quadrática são: fatoração e fórmula

de Bhaskara.

+ bx + c = 0, onde a, b e c são

números reais e a ≠ 0) são dois membros da família de equações polinomiais.

Página 11

Page 12: Caderno Matematica - Rosane de Fátima Worm

[Digite texto]

CENTRO DE ENSINO SUPERIOR DOM ALBERTO _______ Fórmula de Bhaskara: x = -b ± √ b2

a) -x

- 4ac 2a Exemplos: Resolva as seguintes equações e represente graficamente:

2

+ 4 = 0

b) x² - 2x – 3 = 0

c) -x2

Questão Concurso Polícia Federal Num determinado estado, quando um veículo é rebocado por estacionar em local proibido, o motorista paga uma taxa fixa de R$ 76,88 e mais R$ 1,25 por hora de permanência no estacionamento da polícia. Se o valor pago foi de R$101,88 o total de horas que o veículo ficou estacionado na polícia corresponde a:

a) 20 b) 21 c) 22 d) 23 e) 24

+2x – 1 = 0

DOMÍNIO DE UMA FUNÇÃO REAL

Consideraremos que o domínio de uma função f, D ( f ), salvo indicação em contrário, é subconjunto de R, formado por todos os valores de “x” para os quais as operações indicadas nas expressões são possíveis, resultando um número real.

Veja alguns casos notáveis: 1º caso: Quando a variável aparece no denominador de uma fração. Condição: O denominador de uma fração deve ser diferente de zero.

Exemplo: Determinar o domínio da função f(x) = 3 + x . 2x – 5

Página 12

Page 13: Caderno Matematica - Rosane de Fátima Worm

[Digite texto]

CENTRO DE ENSINO SUPERIOR DOM ALBERTO

2º caso: Quando a variável aparece no radicando de um radical de índice par. Condição: O radicando deve ser um número maior ou igual a zero. ______ Exemplo: Determinar o domínio da f(x) = √ 2x – 6 . 5

3º caso: Quando a variável aparece no radicando de um radical de índice par e esse radical está no denominador de uma fração.

Condição: Este caso é a reunião dos dois primeiros, logo, o radicando deve ser maior que zero. Exemplo: Determinar o domínio da função f(x) = 3

a. Determinar o domínio das seguintes funções:

. √ x + 2

EXERCÍCIO:

________ a) f(x) = x³ + x b) f(x) = √ -3x + 15 c) f(x) = 2x – 1 d) f(x) = x² - 3x + 2 3x + 4

e) f(x) = x + 1 . f) f(x) = x + 3 .

√ 4x + 4 x + 2

Página 13

Page 14: Caderno Matematica - Rosane de Fátima Worm

Missão: "Oferecer oportunidades de educação contribuindo para a formação de profissionais conscientes e competentes, comprometidos com o comportamento ético e visando ao desenvolvimento Regional”.

Rua Ramiro Barcelos, 892, Centro - Santa Cruz do Sul – RS - CEP 96810-050

Site: www.domalberto.edu.br

CENTRO DE ENSINO SUPERIOR DOM ALBERTO

Aula 2 – Matemática Aplicada – 11/08/10 Profª Rosane Worm

FUNÇÕES

Na análise de fenômenos econômicos, muitas vezes usamos funções matemáticas para

descrevê-los e interpretá-los. Nesse sentido, as funções matemáticas são usadas como

ferramentas que auxiliam na resolução de problemas ligados à administração e Contábeis.

No exemplo a seguir, temos a distribuição dos preços do quilo do contrafilé no decorrer dos

meses do ano de 2003.

1.1 Preço médio do quilo do contrafilé em São Paulo no ano de 2003.

A cada mês, observamos um preço de carne. Assim, podemos dizer que cada preço, p, está

associado a um mês, t, ou ainda que o preço depende do mês que escolhemos.

Nesse exemplo, se substituirmos cada mês por um número, podemos entender a relação entre

mês e o preço como uma associação entre duas variáveis numéricas; assim temos uma nova

tabela:

1.2 Preço médio do quilo do contrafilé em São Paulo no ano de 2003.

Vale ressaltar que, a cada valor de variável “mês”, temos um único valor da variável “preço”

associado, o que caracteriza uma função matemática ou mais precisamente:

A cada valor da grandeza t está associado um único valor da grandeza P, caracterizando P como função de t, o que é indicado por P= f(t).

7,45 7,36 7,28 7,20 7,14 7,08 7,01 6,95 6,88 6,80 6,75 6,70 Preço (p) R$

Dez Nov Out Set Ago Jul Jun Maio Abril Mar Fev Jan Mês (t)

7,45 7,36 7,28 7,20 7,14 7,08 7,01 6,95 6,88 6,80 6,75 6,70 Preço (p) R$

12 11 10 9 8 7 6 5 4 3 2 1 Mês(t)

Página 14

Page 15: Caderno Matematica - Rosane de Fátima Worm

Missão: "Oferecer oportunidades de educação contribuindo para a formação de profissionais conscientes e competentes, comprometidos com o comportamento ético e visando ao desenvolvimento Regional”.

Rua Ramiro Barcelos, 892, Centro - Santa Cruz do Sul – RS - CEP 96810-050

Site: www.domalberto.edu.br

CENTRO DE ENSINO SUPERIOR DOM ALBERTO Nesse contexto, a variável t é chamada de independente e a variável p é chamada de

dependente; o conjunto dos valores possíveis para a variável independente é o domínio

da função; a imagem da função é o conjunto dos valores da variável dependente que foram

associados à variável independente.

No exemplo anterior, por meio da tabela, fizemos uma representação numérica da função, que

pode ser representada também por meio de um gráfico:

1.1 Preço médio do quilo do contrafilé em São Paulo no ano de 2003.

As funções também são representadas por fórmulas que relacionam as variáveis. No exemplo

dado existe uma fórmula que relacione de maneira exata as variáveis t e P, mas podemos

aproximar tal relação com a fórmula:

p = 0,0676t + 6,6104

cujo gráfico é representado por uma reta que se aproxima dos pontos já traçados na figura anterior

1.1:

Página 15

Page 16: Caderno Matematica - Rosane de Fátima Worm

Missão: "Oferecer oportunidades de educação contribuindo para a formação de profissionais conscientes e competentes, comprometidos com o comportamento ético e visando ao desenvolvimento Regional”.

Rua Ramiro Barcelos, 892, Centro - Santa Cruz do Sul – RS - CEP 96810-050

Site: www.domalberto.edu.br

CENTRO DE ENSINO SUPERIOR DOM ALBERTO

1.2 Reta que aproxima o preço médio do quilo do contrafilé em

São Paulo no ano de 2003.

Para o traçado da reta no gráfico, o domínio que antes era dado por D(f) = { 1, 2, 3, 4, 5, 6, 7, 8,

9, 10, 11, 12} foi substituído pelo conjunto dos números reais.

EXEMPLOS: 1. Escreva funções, descrevendo os seguintes fatos:

a) Receita R de um comerciante que vende a quantidade variável “q” de mercadorias ao preço

unitário de R$ 92,00.

b) Salário mensal y de um operário que ganha R$ 720,00 fixos mais R$ 38,00 por hora extra,

sabendo que o número x de horas extras varia todo mês.

c) Juros (simples) “J” ganhos por um investidor que emprega R$ 42.000,00 à taxa de 6% ao

mês, durante um tempo indeterminado de t meses.

2. Um operário, que ganha salário variável de acordo com as horas extras que trabalha paga

R$ 350,00 de prestação da casa própria, gasta 60% de seu salário em manutenção e poupa

o restante. Determine uma expressão matemática para cada uma das funções Consumo e

Poupança, isto é, expresse seu consumo C e sua popança S em função de sua renda

variável y

Página 16

Page 17: Caderno Matematica - Rosane de Fátima Worm

Missão: "Oferecer oportunidades de educação contribuindo para a formação de profissionais conscientes e competentes, comprometidos com o comportamento ético e visando ao desenvolvimento Regional”.

Rua Ramiro Barcelos, 892, Centro - Santa Cruz do Sul – RS - CEP 96810-050

Site: www.domalberto.edu.br

CENTRO DE ENSINO SUPERIOR DOM ALBERTO

3. Um vendedor ambulante compra objetos ao preço unitário de R$ 150,00 e vende cada

unidade a R$ 250,00.

a) Expresse seu custo diário C em função da quantidade comprada q.

b) Expresse sua receita diária R em função da quantidade vendida q, que se supõe

igual à quantidade comprada.

c) Expresse seu lucro diário em função da quantidade q.

d) Qual o lucro do vendedor por unidade vendida (lucro unitário, Lu, ou Lucro médio,

Lm

)?

4. Suponha que o mesmo ambulante do exemplo 3 resolveu agora incluir entre seus gastos o

custo de sua condução diária que é de R$ 14,00.

a) Como ficarão agora as funções Custo, Receita e Lucro do vendedor?

5. Certa máquina foi comprada pelo preço de R$ 95.000,00 (valor nominal) e vendida depois

de dez anos (vida útil) por R$ 27.000,00 (valor residual).

a) Qual foi a sua depreciação total? E qual a depreciação anual?

b) Expresse a depreciação D como função do tempo em anos n.

c) Qual o valor da máquina após um ano? Após dois anos? Após três anos? E após dez

anos?

d) Como seria a expressão que dá o valor V da máquina em função do tempo n?

Página 17

Page 18: Caderno Matematica - Rosane de Fátima Worm

Missão: "Oferecer oportunidades de educação contribuindo para a formação de profissionais conscientes e competentes, comprometidos com o comportamento ético e visando ao desenvolvimento Regional”.

Rua Ramiro Barcelos, 892, Centro - Santa Cruz do Sul – RS - CEP 96810-050

Site: www.domalberto.edu.br

CENTRO DE ENSINO SUPERIOR DOM ALBERTO 6. A receita de uma empresa poderá ser descrita pela função R = -10

7. O valor inicial de um carro é R$ 20.000,00, e a cada ano esse valor é depreciado em

R$ 1.250,00.

+ 10, onde “x” é a

quantia gasta em propaganda. x + 5

a) Calcule a receita quando nada é gasto em propaganda.

b) Calcule a receita respectivamente, quando o gasto em propaganda for 5, 95 e 995 e

faça uma tabela de valores.

c) Faça um gráfico cartesiano utilizando os valores da tabela.

d) O gráfico faz pensar que existe um valor “l” que não será ultrapassado pela função. Qual

é esse valor (limitante superior)?

a) Determine uma expressão que relacione o valor do carro em função do número de anos

passados após a compra.

b) Após quanto tempo o carro vale a metade do valor inicial?

c) Esboce o gráfico da função obtida no item (a).

Página 18

Page 19: Caderno Matematica - Rosane de Fátima Worm

CENTRO DE ENSINO SUPERIOR DOM ALBERTO

Aula 3 - Matemática Aplicada- 18/08/10 Profª Rosane Worm

ALGUNS TIPOS DE FUNÇÃO Função crescente ou decrescente

Na função do exemplo anterior, percebemos que, à medida que o número t do mês aumenta, o preço p da carne também aumenta; nesse caso, dizemos que a função é crescente.

Tomando como exemplo a demanda, q, de um produto em função de seu preço, p, relacionados pela fórmula q = -2p + 10, podemos esboçar o gráfico:

1.3 Demanda de um produto em função de seu preço.

Percebemos que, à medida que o preço p aumenta, a demanda q diminui. Nesse caso, dizemos que a função é decrescente.

Função Limitada Vamos analisar a função da venda total, v, de um CD, no decorrer dos meses, t, dada pela seguinte

expressão: v = 1 + 500.0,5

250____

1.4 Vendas totais aproximadas de um CD após seu lançamento

t

t 0 1 2 4 6 8 10 12 14 16 18 20

v

Página 19

Page 20: Caderno Matematica - Rosane de Fátima Worm

CENTRO DE ENSINO SUPERIOR DOM ALBERTO

Podemos representar tais valores em um gráfico:

De acordo com essa função, as vendas nunca ultrapassam 250.000 CDs. Como notamos, por maior que seja o valor de t, o valor da função jamais ultrapassa 250. Nesse caso,

dizemos que a função é limitada superiormente e que o valor 250 é um limite superior. Podemos dizer que outros valores, como por exemplo, 251, 260, 300 ou 1.000, também são limites superiores, porém chamamos o valor 250 de supremo por ele ser o menor dos limitantes superiores.

Agora, analisaremos o custo por unidade, Cu

C

, de um eletrodoméstico em função da quantidade, q, produzida, cuja relação é dada por:

u = 240 q

+ 50

Construa a tabela para os seguintes valores e represente no gráfico:

1.5 Custos unitários para produção de um eletrodoméstico

q (unidades) 10 20 40 60 80 100 150 200 250 300

Cu (por unidade em R$)

Podemos representar tais valores no gráfico:

Página 20

Page 21: Caderno Matematica - Rosane de Fátima Worm

CENTRO DE ENSINO SUPERIOR DOM ALBERTO

De acordo com essa função, o custo unitário nunca é menor que 50,00. Na verdade, se calcularmos o custo por unidade para produzir q= 10.000 unidades, obtemos o custo aproximado de Cu

Como notamos, por maior que seja o valor q, o valor da função jamais será inferior a 50. Nesse caso, dizemos que a função é limitada inferiormente e que o valor 50 é um limitante inferior. Podemos dizer que outros valores, por exemplo, 49, 40, 30 ou 0, também são limitantes inferiores, porém chamamos o valor 50 de ínfimo por ele ser o maior dos limitantes inferiores.

= 50,02.

Analise agora, a função do valor, v, de uma ação negociada na bolsa de valores, no decorrer dos meses, t, dada pela expressão, e em seguida construa o gráfico:

v = t2

t – 6t + 12

2

– 6t + 10

1.6 Valores aproximados de cada ação na bolsa de valores

t 0 1 2 3 4 5 6 7 8 9 10 15

v

Podemos representar tais valores no gráfico:

Analisando mais atentamente essa função, percebemos que o valor da ação jamais ultrapassa R$ 3,00 e, ao mesmo tempo, nunca é inferior a R$ 1,00. Portanto, temos uma função limitada superiormente e inferiormente, o que nos leva a chamá-la de função limitada.

EXEMPLOS PRÁTICOS DE FUNÇÕES:

• Conta de água = valor a ser pago depende do consumo do mês.

• Conta de telefone = o valor a ser pago, depende dos minutos falados durante o mês.

• A venda do mês de um estabelecimento depende dos clientes.

Página 21

Page 22: Caderno Matematica - Rosane de Fátima Worm

CENTRO DE ENSINO SUPERIOR DOM ALBERTO

• A demanda de um certo produto no mercado depende do preço desse produto.

• A poluição do ar em uma cidade pode depender do número de veículos nas ruas

• O valor de uma garrafa de vinho pode depender do ano em que o vinho foi fabricado.

Exercícios: 1.O gráfico seguir representa o valor (em R$) de uma ação negociada na bolsa de valores no decorrer dos meses.

Considerando t = 1 o mês de janeiro, t = 2 o mês de fevereiro, e assim sucessivamente, determine:

a) O valor da ação nos meses de fevereiro , maio, agosto e novembro. b) Os meses em que a ação vale R$ 2,00. c) Os meses em que a ação assumiu o maior e o menor valor. Determine também os valores nesses

meses. d) A média dos valores das ações.

2. A receita R na venda de q unidades de um produto é dada por R = 2q.

a) Determine a receita quando são vendidas 5, 10, 20 e 40 unidades do produto. b) Quantas unidades foram vendidas, se a receita foi de R$ 50,00? c) Esboce o gráfico da receita. d) A função é crescente ou decrescente? Justifique: e) A função é limitada superiormente? Justifique:

3. O custo C para a produção de q unidades de um produto é dado por C = 3q + 60.

a) Determine o custo quando são produzidas 0, 5, 10, 15 e 20 unidades.

Página 22

Page 23: Caderno Matematica - Rosane de Fátima Worm

CENTRO DE ENSINO SUPERIOR DOM ALBERTO

b) Esboce o gráfico da função.

c) Qual o significado do valor encontrado para C quando q = 0?

d) A função é crescente ou decrescente? Justifique.

e) A função é limitada superiormente? Em caso afirmativo, qual seria o valor para o supremo? Justifique.

Página 23

Page 24: Caderno Matematica - Rosane de Fátima Worm

Aula 4 – Matemática Aplicada – 25/08/10

Profª Rosane Worm

MODELOS DE FUNÇÕES Analisaremos as funções e suas aplicações estudando conceitos como

taxa de variação; função receita, custo e lucro; break-even point; juros simples;

valores máximos, valores mínimos, intervalos de crescimento e decrescimento

das funções e Curva de Possibilidade de P

Produção. Veremos estes conceitos trabalhando com situações problemas:

No exemplo a seguir, temos o custo para a produção de camisetas.

Quantidade (q) 0 5 10 20 50 100

Custo C (R$) 100 110 120 140 200 300

Notamos que, quando há um aumento de 5 unidades produzidas, o custo

aumenta em R$ 10,00; se há um aumento de 10 unidades, o custo

aumenta em R$ 20,00, ou ainda, para um aumento de 30 unidades, o custo

aumenta em R$ 60,00. Concluímos que uma variação na variável independente

gera uma variação proporcional na variável dependente. É isso que

caracteriza uma função de 1º grau. Para um maior entendimento da função de 1º grau desse exemplo,

podemos calcular a taxa de variação média, ou simplesmente taxa de variação da variável dependente, C, em relação à variável independente, q,

pela razão:

Taxa de Variação = m = variação em c = 10 = 20 = 60 variação em q 5 10 30

... = 2

Nesse exemplo, a razão m = 2 dá o acréscimo no custo correspondente

ao acréscimo de 1 unidade na quantidade.

Notamos ainda que, mesmo se não forem produzidas camisetas (q = 0),

haverá um custo fixo de R$ 100,00. Tal custo pode ser atribuído à manutenção

das instalações, impostos, despesas com pessoal, etc.

Página 24

Page 25: Caderno Matematica - Rosane de Fátima Worm

De modo geral, podemos dizer que a função custo é obtida pela soma

de uma variável, o Custo Variável, com uma parte fixa, o custo fixo:

C = Cv + Cf

Para o nosso exemplo, podemos obter a função do custo pela

relação:..............................

Onde Cv = 2q e Cf

= 100.

O gráfico da função é uma reta, onde m=2 dá a inclinação da reta,

também chamado de coeficiente angular”m” e o termo independente 100,

chamado de coeficiente linear “n” representa o ponto em que a reta corta o

eixo vertical.

Observe isso esboçando o gráfico:

Dada a função custo para a produção das camisetas, vamos analisar

agora a função Receita obtida com a comercialização das unidades.

Para um produto, a receita R é dada pela multiplicação do preço unitário, p,

pela quantidade, q, comercializada, ou seja, R = p.q

Supondo em nosso exemplo que o preço para a comercialização de

cada camiseta seja R$ 7,00, obtemos a função Receita:

R = 7q notando que a taxa de variação é m=7 (inclinação da reta) e o termo

independente é 0 (onde corta o eixo vertical).

Página 25

Page 26: Caderno Matematica - Rosane de Fátima Worm

O gráfico para essa função é uma reta que passa pela origem dos eixos

coordenados. Observe representando graficamente:

Dadas as funções Custo e Receita é natural questionarmos sobre a

função Lucro. De modo geral, a função Lucro é obtida fazendo “receita menos

custo”:

Lucro = Receita – Lucro Para nosso exemplo, chamando L o lucro e supondo que as quantidades

produzidas de camisetas são as mesmas comercializadas, temos:

L = R – C L = 7q – (2q + 100)

L = 5q – 100

Esboce o gráfico, e note que a função lucro também é uma função de 1º

grau, cujo gráfico é uma reta com inclinação m=5 e que corta o eixo vertical em

-100.

Página 26

Page 27: Caderno Matematica - Rosane de Fátima Worm

Podemos observar pelo gráfico que a reta corta o eixo horizontal em

q=20. Na verdade, podemos obter facilmente esse valor fazendo L=0.

L = 0 5q – 100 = 0

q = 20

Tal valor indica que, se q < 20, temos lucro negativo ( L < 0, indica

prejuízo) e, se q > 0, temos lucro positivo.

Graficamente, o ponto em que a receita é igual ao custo é chamado de break-even point

e é dado pelo encontro das curvas que representam a Receita e o

Custo. No nosso exemplo, é dado pelo encontro das retas R = 7q e C= 2q + 100.

Como podemos observar, a função de 1º grau pode ser útil para representar o

custo, a receita e o lucro na comercialização de um produto.

Página 27

Page 28: Caderno Matematica - Rosane de Fátima Worm

Exercícios: 1. O salário fixo mensal de um segurança é de R$ 580,00. Para aumentar

sua receita, ele faz plantões noturnos, onde recebe R$ 70,00 por noite de

trabalho.

a) Se um mês o segurança fizer 4 plantões, que salário receberá?

b) Qual o salário final y quando realiza x plantões?

c) Qual o número mínimo de plantões necessários para gerar uma receita

superior a R$ 900,00?

2. Supondo que o custo total para fabricar “x” unidades de um certo

produto seja dado por:

Ct (x) = x2

a) O custo fixo.

+ 8, determinar:

b) O custo de fabricação de 4 unidades.

c) O custo de fabricação da 4ª unidade.

3. O proprietário de uma escola de natação acredita que em t anos o

número de alunos seja dado pela lei n(t) = 5t + 40.

a) Qual o número atual de alunos?

b) Qual será o número de alunos daqui a 3 anos?

4. O custo total de um produtor consiste em uma sobretaxa fixa de R$

5.000,00 mais os custos de produção de R$ 60,00 por unidade. Expresse o

custo total em função do número de unidades produzidas e desenhe o gráfico.

5. Um produto, quando comercializado, apresenta as funções Custo e

Receita dadas, respectivamente, por C = 3q + 90 e R = 5q, onde q é a

quantidade comercializada que se supões ser a mesma para o custo e receita.

a) Em um mesmo sistema de eixo, esboce os gráficos de custo e receita.

Determine também e indique no gráfico o Break-even point.

b) Obtenha a função Lucro, L, esboce o seu gráfico e determine as

quantidades necessárias para que o lucro seja negativo, nulo e positivo.

Página 28

Page 29: Caderno Matematica - Rosane de Fátima Worm

Missão: "Oferecer oportunidades de educação contribuindo para a formação de profissionais conscientes e competentes, comprometidos com o comportamento ético e visando ao desenvolvimento Regional”.

Rua Ramiro Barcelos, 892, Centro - Santa Cruz do Sul – RS - CEP 96810-050

Site: www.domalberto.edu.br

CENTRO DE ENSINO SUPERIOR DOM ALBERTO

Aula 5 – Matemática Aplicada – 01/09/2010 Profª Rosane Worm

Supondo que uma empreiteira deseja comprar areia e pedra para fazer um calçamento e

disponha de R$ 1.000. Sabendo que o metro cúbico de areia custa R$ 50,00 e o metro cúbico

de pedra custa R$ 40,00, podemos obter uma expressão matemática que relacione os

possíveis valores e quantidades de areia e pedra a serem compradas utilizando o orçamento

R$ 1.000,00.

Sendo x a quantidade de areia a ser comprada então, o valor a ser gasto com areia será

50x. De modo análogo, sendo y a quantidade de pedra a ser comprada então, o valor a ser

gasto com pedras será 40y.

A restrição orçamentária para a compra de dois produtos A e B, de acordo com o orçamento

determinado, é dada pela expressão:

Restrição orçamentária

“Valor gasto com A” + “Valor gasto com B” = Orçamento Neste caso a restrição orçamentária para a compra de areia poderá ser dada por:

50x + 40y = 1000

Para essa expressão, dizemos que a dependência entre x e y foi dada de forma

implícita. Podemos explicitar tal dependência isolando x ou y, obtendo então:

X = -0,8y + 20 ou y = -1,25x + 25 Em todas as expressões, a dependência é linear, o que caracteriza a função de 1º grau.

Para a obtenção do gráfico da restrição orçamentária, é interessante determinar os pontos em

que a reta corta o eixo x fazendo y = 0 (em qualquer uma das expressões anteriores)por

exemplo:

50x + 40.0 = 1000 50x = 1000

x = 20

Obtendo o ponto em que a reta corta o eixo y fazendo x = 0 ( em qualquer uma das

expressões anteriores); por exemplo:

Página 29

Page 30: Caderno Matematica - Rosane de Fátima Worm

Missão: "Oferecer oportunidades de educação contribuindo para a formação de profissionais conscientes e competentes, comprometidos com o comportamento ético e visando ao desenvolvimento Regional”.

Rua Ramiro Barcelos, 892, Centro - Santa Cruz do Sul – RS - CEP 96810-050

Site: www.domalberto.edu.br

CENTRO DE ENSINO SUPERIOR DOM ALBERTO

50.0 + 40y = 1000 40y = 1000

y = 25

Esses dois pontos representam opções extremas de compra pois, se y=0, não é

comprada pedra e, portanto, gasta-se todo o orçamento com x = 20m3 de areia; entretanto, se

x = 0, não é comprada areia, gastando-se o orçamento com y = 25 m3 de pedra.

Interpretando o gráfico:

• Pontos abaixo da reta correspondem a quantidades que, quando compradas,

determinam um custo abaixo do orçamento. O ponto A = (8;7) resulta em um gasto de

R$ 680,00.

• Para pontos na reta correspondem a quantidades que, quando compradas,

determinam um custo igual ao orçamento. O ponto B = (8; 15) resulta em um gasto

R$ 1.000,00.

• Pontos acima da reta correspondem a quantidades que, quando compradas,

determinam um custo acima do orçamento. O ponto C = (8;22) resulta em um gasto

de R$ 1.280,00.

Página 30

Page 31: Caderno Matematica - Rosane de Fátima Worm

Missão: "Oferecer oportunidades de educação contribuindo para a formação de profissionais conscientes e competentes, comprometidos com o comportamento ético e visando ao desenvolvimento Regional”.

Rua Ramiro Barcelos, 892, Centro - Santa Cruz do Sul – RS - CEP 96810-050

Site: www.domalberto.edu.br

CENTRO DE ENSINO SUPERIOR DOM ALBERTO

Página 31

Page 32: Caderno Matematica - Rosane de Fátima Worm

Missão: "Oferecer oportunidades de educação contribuindo para a formação de profissionais conscientes e competentes, comprometidos com o comportamento ético e visando ao desenvolvimento Regional”.

Rua Ramiro Barcelos, 892, Centro - Santa Cruz do Sul – RS - CEP 96810-050

Site: www.domalberto.edu.br

CENTRO DE ENSINO SUPERIOR DOM ALBERTO

Aula 6 – Aplicada- 08/09/10

Prof. Rosane Worm

Caracterização geral de uma função de 1º grau Definição: uma função de 1º grau é dada por y = f(x) = mx + b, com m ≠ 0, onde m é chamado

de coeficiente angular, ou taxa de variação média ou simplesmente taxa de variação da

variável dependente, y, em relação à variável independente, x, e pode ser calculado pela razão

m = variação em y = ∆y ou m = f(x1 +∆x ) – f(x1

• graficamente, m dá a inclinação da reta que representa a função.

) variação em x ∆x ∆x

• b é chamado de coeficiente linear e pode ser obtido fazendo x = 0, e é o ponto onde a

reta corta o eixo y.

Graficamente, podemos observar os componentes do coeficiente angular e o coeficiente

linear:

Se m > 0, temos uma taxa de variação positiva, logo a função é crescente e a reta será

inclinada positivamente.

Se m < 0, temos uma taxa de variação negativa, logo a função é decrescente e a reta é

inclinada negativamente.

Página 32

Page 33: Caderno Matematica - Rosane de Fátima Worm

Missão: "Oferecer oportunidades de educação contribuindo para a formação de profissionais conscientes e competentes, comprometidos com o comportamento ético e visando ao desenvolvimento Regional”.

Rua Ramiro Barcelos, 892, Centro - Santa Cruz do Sul – RS - CEP 96810-050

Site: www.domalberto.edu.br

CENTRO DE ENSINO SUPERIOR DOM ALBERTO

Obtenção da função de 1º grau Exemplo1: Um operário tem seu salário dado por um valor fixo mais uma parte variável que é

diretamente proporcional ao número de horas extras trabalhadas. Sabe-se que em um mês em

que são feitas 12 horas extras, o salário é de R$ 840,00, e que em um mês em que são feitas

20 horas extras, o salário é de R$ 1.000. Obtenha a relação que dá o salário em função das

horas extras.

Exemplo 2

y

: Obtenha a equação da reta que passa pelos pontos (5,3) e (15,10)

Exercícios: 1. Determinar a equação da reta que passa pelos pontos A (-1; -2) e B (5 ; 2).

2. Dada a reta que tem a equação 3x + 4y = 7, determine sua declividade.

3. Determine à equação da reta de coeficiente angular igual a -2 e que intercepta o eixo y no

ponto A (0; -3).

4. Seja a percentagem da população mundial que vive em regiões urbanas x anos após

1980. De acordo com dados publicados recentemente, y tem sido uma função linear de x

desde 1980. A percentagem da população mundial que vive em regiões urbanas era de 39,5

em 1980 e 45,2 em 1995.

a) Determine y como função de x .

Página 33

Page 34: Caderno Matematica - Rosane de Fátima Worm

Missão: "Oferecer oportunidades de educação contribuindo para a formação de profissionais conscientes e competentes, comprometidos com o comportamento ético e visando ao desenvolvimento Regional”.

Rua Ramiro Barcelos, 892, Centro - Santa Cruz do Sul – RS - CEP 96810-050

Site: www.domalberto.edu.br

CENTRO DE ENSINO SUPERIOR DOM ALBERTO

b) Determine a percentagem da população mundial que viveu em regiões urbanas no ano

1990.

c) Determine o ano em que 50% da população mundial estará vivendo em regiões

urbanas.

d) Em quanto à percentagem da população mundial que vive em áreas urbanas aumenta a

cada 5 anos?

5. Uma dona de casa deseja comprar legumes e frutas e dispõe de R$24,00. Sabe-se que o

preço médio por quilo de legumes é de R$ 3,00 e por quilo de frutas é de R$ 4,00.

a) Obtenha a expressão da restrição orçamentária.

b) Represente graficamente a expressão obtida no item anterior.

c) Obtenha a expressão que determina a quantidade de frutas em função da quantidade de

legumes comprada.

d) Obtenha a expressão que determina a quantidade de legumes em função da quantidade

de frutas compradas.

Página 34

Page 35: Caderno Matematica - Rosane de Fátima Worm

Missão: "Oferecer oportunidades de educação contribuindo para a formação de profissionais conscientes e competentes, comprometidos com o comportamento ético e visando ao desenvolvimento Regional”.

Rua Ramiro Barcelos, 892, Centro - Santa Cruz do Sul – RS - CEP 96810-050

Site: www.domalberto.edu.br

CENTRO DE ENSINO SUPERIOR DOM ALBERTO

Aula 7 – Matemática Aplicada- 15/09/10 Profª Rosane Worm

EXERCÍCIOS

1. A receita de uma empresa poderá ser descrita pela função R = -10 + 10, onde “x” é a

quantia gasta em propaganda. x + 5

a) Calcule a receita quando nada é gasto em propaganda.

b) Calcule a receita respectivamente, quando o gasto em propaganda for 5, 95 e 995 e

faça uma tabela de valores.

c) Faça um gráfico cartesiano utilizando os valores da tabela.

d) O gráfico faz pensar que existe um valor “l” que não será ultrapassado pela função.

Qual é esse valor (limitante superior)?

2. Um produtor verificou que o custo unitário (ou custo médio) de fabricação de um produto varia

com a quantidade, sendo tanto menor quanto maior era a quantidade fabricada. A função pode

ser expressa na forma Cme = 120 + 20.

q

a) Calcule Cme(1), Cme(10), Cme(20), Cme(30), Cme(40) e Cme

p

(100), faça uma tabela e o

gráfico da função.

b) A função tem limite inferior? Qual?

3. Um comerciante verificou que a demanda de certo produto depende de seu preço, de acordo

com a seguinte tabela:

q

4 80

6 70

8 60

10 50

a) Faça o gráfico cartesiano da função Demanda a partir dessa tabela.

b) Determine a expressão matemática da função na forma q = f(p) e depois p = f(q).

Página 35

Page 36: Caderno Matematica - Rosane de Fátima Worm

Missão: "Oferecer oportunidades de educação contribuindo para a formação de profissionais conscientes e competentes, comprometidos com o comportamento ético e visando ao desenvolvimento Regional”.

Rua Ramiro Barcelos, 892, Centro - Santa Cruz do Sul – RS - CEP 96810-050

Site: www.domalberto.edu.br

CENTRO DE ENSINO SUPERIOR DOM ALBERTO

4. A receita R na venda de q unidades de um produto é dada por R = 2q.

a) Determine a receita quando são vendidas 5, 10, 20 e 40 unidades do produto.

b) Quantas unidades foram vendidas, se a receita foi de R$ 50,00?

c) Esboce o gráfico da receita.

d) A função é crescente ou decrescente? Justifique:

e) A função é limitada superiormente? Justifique::

5. O valor inicial de um carro é R$ 20.000,00, e a cada ano esse valor é depreciado em

R$ 1.250,00.

a) Determine uma expressão que relacione o valor do carro em função do número de anos

passados após a compra.

b) Após quanto tempo o carro vale a metade do valor inicial?

c) Esboce o gráfico da função obtida no item (a).

6. Um comerciante compra objetos ao preço unitário de R$ 4,00, gasta em sua condução diária

R$ 60,00 e vende cada unidade a R$ 7,00.

a) Expresse seu custo diário C em função da quantidade comprada q. Expresse também

sua receita R em função da quantidade vendida q, que se supões igual a quantidade

comprada. Além disso, expresse seu lucro diário L em função da quantidade q.

b) Esboce, no mesmo sistema de eixos, os gráficos das funções de seu custo diário C e de

sua receita R, determinando e indicando o Break-even point. Qual o significado desse

ponto?

c) Esboce o gráfico da função Lucro L e indique qual(is) quantidade(s) que proporciona(m)

lucro positivo e lucro negativo.

d) Podemos obter as funções Custo Médio, Cme e Lucro Médio, Lme, dividindo a função do

custo e lucro pela quantidade. Então, obtenha a função Cme e Lme

e esboce seus

respectivos gráficos, indicando se existirem limitantes superior ou inferior.

Página 36

Page 37: Caderno Matematica - Rosane de Fátima Worm

Missão: "Oferecer oportunidades de educação contribuindo para a formação de profissionais conscientes e competentes, comprometidos com o comportamento ético e visando ao desenvolvimento Regional”.

Rua Ramiro Barcelos, 892, Centro - Santa Cruz do Sul – RS - CEP 96810-050

Site: www.domalberto.edu.br

CENTRO DE ENSINO SUPERIOR DOM ALBERTO

7. O custo fixo mensal de uma empresa é R$ 30.000,00, o preço unitário de vendo ´r R$ 8,00 e

o custo variável por unidade é R$ 6,00.

a) Obtenha a função lucro mensal.

b) Obtenha a função lucro líquido mensal, sabendo que o imposto de renda é 30% do lucro.

8. Sabendo que a margem de contribuição por unidade é R$ 3,00, o preço de venda é R$ 10,00

e o custo fixo é R$ 150,00 por dia, obtenha:

a) A função receita.

b) A função custo total diário.

c) O ponto de nivelamento.

d) A função lucro diário.

e) A quantidade que deverá ser vendida para que haja um lucro de R$ 180,00 por dia.

Página 37

Page 38: Caderno Matematica - Rosane de Fátima Worm

Aula 8 – Matemática Aplicada – 13/10/2010 Profª Rosane Worm

Limites e Continuidades

De modo geral, o processo de determinar o limite consiste em investigar o comportamento de

uma função f(x) quando “x” se aproxima de um número “c” que pode ou não pertencer ao domínio de f. Os limites aparecem em um grande número de situações da vida real. O zero absoluto, por exemplo, a temperatura T na qual toda a agitação molecular cessa, é uma temperatura da qual podemos nos aproximar mas que jamais conseguimos atingir exatamente. Da mesma forma, os economistas que falam do lucro em um mercado ideal e os engenheiros que determinam a eficiência de um novo motor em condições ideais estão na realidade trabalhando com situações-limite. Para ilustrar o conceito de limite, vamos observar algumas situações. Nelas veremos que uma seqüência de valores atribuídos a uma variável implica em outra seqüência de valores numéricos de uma expressão dessa variável.

Idéia Intuitiva de Limite

Exemplo 1 Vamos desenvolver as seguintes etapas:

: Consideramos uma figura de forma quadrada e de área igual a 1.

• Colorir metade dessa figura.

A área colorida é ½

• Colorir de outra forma metade do que restou em branco. A área colorida é ½ + ¼ = ¾

Página 38

Page 39: Caderno Matematica - Rosane de Fátima Worm

• Colorir de outra forma metade do que restou em branco. A área colorida é ½ + ¼ + ⅛ = ⅞

Continuando esse processo sucessiva e indefinidamente, a região colorida vai preenchendo

quase todo o quadrado inicial, isto é, a área vai se aproximando de 1, ou seja, vai tendendo a 1. ½ + ¼ + 7/8 + 15/16 + 31/32 + 63/64,..., 1.

Dizemos então que o limite dessa soma é igual a 1. Quando dizemos que a área da região colorida tende a 1, significa que ela se aproxima de 1,

sem no entanto assumir esse valor. Exemplo 2: Para ilustrar o conceito de limite, suponha que estejamos interessados em saber o

que acontece à função f(x) = x² + x – 2

X se aproxima de 1 pela esquerda x se aproxima de 1 pela direita

quando x se aproxima de 1. Embora f(x) não seja definida no ponto x = 1, podemos ter uma x – 1 boa idéia da situação calculando f(x) para valores de x que se aproximem cada vez mais de 1, tanto pela direita como pela esquerda.

X 0,8 0,9 0,95 0,99 0,999 1 1,001 1,01 1,05 1,1 f(x)

Os valores da tabela sugerem que f(x) se aproxima do número............ quando x se aproxima de

1, tanto pela esquerda como pela direita. Para descrever esse tipo de comportamento, dizemos que o “ limite de f(x) quando x tende a 1 é igual a ........”, o que é abreviado como:

O limite de f(x) quando x tende a 1 pela esquerda é igual a .........., e indicamos por:

O limite de f(x) quando x tende a 1 pela direita é igual a .........., e indicamos por:

Os limites à esquerda e a direita são chamados de limites laterais. Em vez das duas indicações anteriores; podemos utilizar a seguinte representação única:

Página 39

Page 40: Caderno Matematica - Rosane de Fátima Worm

Exemplo 3 f(x)= x, se x

: Considere o gráfico da função f: IR IR, definida por:

≤3 x + 2, se x>3

Observe os limites laterais:

Quando x se aproxima de 3 pela esquerda, f(x) se aproxima de3, isto é: Quando x se aproxima de 3 pela direita, f(x) se aproxima de 5, isto é:

Como os limites laterais neste caso são diferentes, dizemos que não existe o limite de f(x)

quando x tende a 3. Para que exista o limite, f(x) deve se aproximar de um mesmo valor quando x se aproxima de “a”

pela esquerda ou pela direita, isto é:

lim f(x) = lim f(x) = lim f(x) x a_ x a+ x a Exemplos 1) Dada à função f(x) definida por f(x) = x+1 se x >2

x2 ≤+1 se x 2 e x≠ -1, representá-la graficamente e verificar no gráfico os limites:

a) lim f(x) x-2

b) lim f(x) x0

Página 40

Page 41: Caderno Matematica - Rosane de Fátima Worm

c) lim f(x) x-1 d) lim f(x) x2- e) lim f(x) x2+ f) lim f(x) x2

2) Calcular os limites: a) lim (x2

xxx21

123

++−

- 5x + 4) x2

b) lim

x1 c) lim

11−−

xx

x4

3) Dada a f(x) = 4x – 3, calcule: a) lim f(x) x2 b) lim f(x) x0 c) lim f(x) x5 d) lim f(x) x-1

Página 41

Page 42: Caderno Matematica - Rosane de Fátima Worm

Função Contínua

Consideremos o gráfico das funções f1, f2 e f3

:

f1 f2 f3

Observe que a cada “x” do domínio de f1, associamos um único valor de “y” e também que o

gráfico de f1, não é interrompido para x = a, isto é, o gráfico é desenhado de uma só vez. Observe que o mesmo não acontece para as funções f2 e f3 , cujos traçados são interrompidos

para x = a . A função f1 é denominada função contínua e as funções f2 e f3 são chamadas descontínuas em x

= a . O ponto “a” é chamado ponto de descontinuidade da função. Para que uma função f(x) seja contínua em x = a do seu domínio, devem ser satisfeitas as

seguintes condições: 1º) Exista f(a) 2º) Exista lim f(x) x → a 3º) lim f(x) = f(a) x → a Note que para a função f2 não existe lim f(x) e para f3 não existe f (a). x → a Vejamos alguns exemplos: 1º) Verificar se a função f(x) = x² - 4 é contínua em x = 3 x – 2 2º) Verificar se a função f(x) = x + 7

3º) Determinar “m” ∈ R de modo que a função f(x) = x² - 5x + 6 , se x ≠ 4 , seja contínua em x = 4 . 3m , se x = 4

é contínua em x = 1. X – 1

Página 42

Page 43: Caderno Matematica - Rosane de Fátima Worm

Exercícios: 1. Dada a função f(x) = 1 – x

2. Se n ∈ R e seja f : R → R a função definida por f(x) = 2x – 4, se x ≠3 , calcule “n” para que

f(x) seja contínua em x = 3. 2n , se x = 3

3. Calcule os limites:

, diga se f(x) é contínua nos pontos: x + 1 a) x = 0 b) x = -1 c) x = 2

a) 2

lim−→x

)1( 3 +x

b) 0

lim→x

)5( 4 +x

c) 4

lim→x 1

62

2

−+

xx

d) 0

lim→x

)14( 23 −+− xxx

e) 3

lim→x

)41( 2x−

4. Determine:

a) 7lim4→x

b) 32lim1−→x

c) 2

lim→x

)5( 3 xx + d) 4

lim−→x

− xx

214 2

e) 3

lim→x

)13( 2 −+ xx f) 0

lim→x

)1( 234 ++− xxx

5. Dada a função xxxxxxxf

3365)( 23

23

+−+−

= , calcule:

a) )(lim1

xfx→

d) )(lim2

xfx→

b) )(lim21

xfx→

e) )(lim2

xfx −→

c) )(lim1

xfx −→

6. Faça uma lista de todos os valores de x para os quais a função dada não está definida:

a) xxxxf +−= 35)( 3

Página 43

Page 44: Caderno Matematica - Rosane de Fátima Worm

b) 31)(

2

+−

=xxxf

c) )32)(2(

5)(3

+−+

=xxxxxf

7.)2()963()( 2

2

−++−

=xxxxxf . Determine os valores de x para os quais a função não é definida.

8. A população (em milhares) de uma colônia de bactérias t minutos após a introdução de uma

toxina é dada pela função

+−+

=7287

)(2

tt

tf sese

55

≥<

tt

.

a) Quanto tempo a colônia leva para se extinguir ?

b) Explique por que a população deve ser de 10.000 em alguma ocasião entre 1=t e .7=t

9. Um fabricante é capaz de produzir 5.000 unidades de um produto por dia a um custo fixo de

R$ 1.500,00 por dia e um custo variável de R$ 2,00 por unidade. Expresse o custo C em função do

número de unidades produzidas e desenhe o gráfico da função )(xC . A função )(xC é contínua? Se

não é, em que pontos existem descontinuidades?

Página 44

Page 45: Caderno Matematica - Rosane de Fátima Worm

Aula 09 – Matemática Aplicada – 2010/10 Profª Rosane Worm

Propriedades dos limites Vamos estudar agora algumas propriedades que admitiremos verdadeiros se efetuarmos suas demonstrações. Consideremos então, as funções f(x) e g(x), definidas num domínio D tal que:

lim f(x) = a e lim g(x) = b

x→ c x→ c

Limite de uma constante: é a própria constante. Lim k = k

Ex: a) lim 3 = b) lim 2/3 = x→ c

x → 2 x → -1

Limite da soma: é igual à soma dos limites dessas funções. Lim [ f(x) + g(x) ] = lim f(x) + lim g(x) = a + b

x → c x → c x → c

a) lim ( x + 3 ) =

x → 2

b) lim (x2

+ x + 1) =

x → -1

Limite da diferença: é igual à diferença dos limites dessas funções.

Lim [ f (x) – g(x)] = lim f(x) – lim g(x) = a – b

x → c x → c x → c

a) lim ( 4x2 – X) =

x → 2

b) lim ( x3 + 4x2 – 5x) =

x → 1

Limite do produto: é igual ao produto dos limites dessas funções.

Lim [ f(x) . g(x) ] = lim f(x) . lim g(x) = a.b

x → c x → c x → c

a) lim 4x2

x → 3

Página 45

Page 46: Caderno Matematica - Rosane de Fátima Worm

Limite do quociente: é igual ao quociente dos limites dessas funções (exceto quando o

limite do divisor for igual a zero) isto é: Lim f(x g(x)

) = lim f(x) x → c = a

x → c lim g(x) b

x → c

a) lim ( x + 3) = x → 2

(x + 4)

Limite de uma potência: Lim [ f(x) ]n = [ lim f(x)]n = an se a > 0

x → c x → c

a) lim (5x)2 =

x → 1

Limite de uma raiz: lim n√f(x) = lim n√f(x) = n√a ⇒ se a ≥ 0

a) lim x → c x → c

5√ 3x4

FORMAS INDETERMINADAS

x → 2

Consideremos a função f(x) = x – 2 e vejamos qual o limite quando x tende a 2; se x tender a 2 pela esquerda

ou pela direita, x² - 4 notamos que o numerador tende a zero, bem como o denominador. Teríamos então a fração impossível de ser calculada 0 e que é chamada de FORMA INDETERMINDADA.

0

Todavia observamos que a expressão de f(x) pode ser simplificada ao fatorar o denominador, ou seja:

f(x) = x – 2 = x – 2 = 1 x² - 4 ( x – 2).( x + 2) x + 2

.

Sendo assim, as funções f(x) = x – 2 e h(x) = 1

Ora, no cálculo do limite de f(x), quando x tende a 2, não interessa o que acontece quando x = 2 (pois quando x tende a 2 ele é diferente de 2). Assim, no cálculo do limite f(x) e h(x) tem o mesmo comportamento. Portanto:

tem um comportamento idêntico (exceto para x = 2,em que a 1ª não é definida). X² - 4 x + 2

lim x - 2 = lim 1 = 1

x→ 2 x² - 4 x→ 2 x + 2 4 .

Convém lembrarmos alguns casos de fatoração: (a² - b²) = (a + b).(a – b) a² + 2ab + b² = (a + b)² Página 46

Page 47: Caderno Matematica - Rosane de Fátima Worm

a² - 2ab + b² = (a – b)² Exemplos: a) lim x² - 10x + 25 = lim ( x – 5)² x→5 x – 5 x→5 x – 5

= lim ( x – 5) = 0

b) lim x² - 6x + 5 = lim ( x – 1).( x – 5 ) x→1 x – 1 x→1 x – 1 x→1

= lim ( x – 5 ) = - 4

c) lim x² + 8x = lim x.( x + 8 ) x→0 x x→0 x x→0

= lim ( x + 8 ) = 8

Exercício:

1. Obtenha os limites:

a) lim x² - 9 b) lim 49 – x² c) lim 5 – x d) lim x² + x x→3 x – 3 x→-7 7 + x x→5 25 – x² x→0 x² - 3x

.

e) lim x³ f) lim x² - 4x + 3 g) lim x² - 7x + 12 h) lim x – 1 x→0 2x² - x x→1 x – 1 x→4 x – 4 x→1 x² - 3x + 2

Página 47

Page 48: Caderno Matematica - Rosane de Fátima Worm

Aula 10 – Matemática Aplicada – 27/10/10 Profª Rosane Worm

DERIVADAS: CONCEITOS BÁSICOS

INCLINAÇÃO E TAXA DE VARIAÇÃO O conceito de derivada foi introduzido em meados dos séculos XVII e XVIII em estudos de Física ligados a movimentos. As idéias preliminarmente introduzidas em Física foram aos poucos sendo incorporadas a outras áreas do conhecimento. Em economia e administração o conceito de derivada é utilizado principalmente no estudo gráfico de funções, determinação de máximos e mínimos e cálculo de taxas de variação de funções.

Seja f uma função definida num conjunto D; sejam x1 e x1 + ∆x dois pontos de D. Quando a variável x passa do valor x1 para o valor x1 + ∆x sofrendo uma variação ∆x, o correspondente valor da função passa de f( x1 ) para o valor f( x1 + ∆x ) sofrendo, portanto uma variação ∆y = f( x1 + ∆x ) – f( x1

O quociente

).

∆y = f( x1 + ∆x ) - f( x1 ) .recebe o nome de taxa média da função quando x ∆x ∆x

Passa do valor x1 para o valor x1 + ∆x e expressa a variação média sofrida pelos valores da função entre estes dois pontos.

Numa função do 1º grau, a taxa de variação média corresponde ao coeficiente angular da reta que representa graficamente a função, cuja equação da reta é dada por f(x) = mx + n, porém o conceito de taxa de variação média não é exclusivo das funções do 1º grau. A taxa de variação média pode ser calculada para qualquer função. Se y representa a variável dependente e x a variável independente, então a taxa de variação média de y em relação a x é calculada pela razão:

Taxa de variação média = variação de y = ∆y Variação em x ∆x Ex. Um grupo de operários em uma indústria de alimentos, produz uma quantidade P de alimentos que depende

do número x de horas trabalhadas a partir do início do expediente e que a produção é dada por P= k.x2 e fazendo k=1, temos:

P = x2 , então podemos escrever a função como f(x) = x2 O instante do início do expediente é representado por x=0, ou seja, 0:00 hora. Vamos determinar a taxa de

variação média da produção para o intervalo de tempo das 3:00 horas até as 4:00 horas e também para o intervalo das 4:00 horas até as 5:00 horas ( ou seja 3 ≤ x ≤ 5).

Taxa de variação média = variação em P = ∆P Variação em x ∆x Para os intervalos de tempo estipulados temos: Intervalo de 3 até 4 = f(4) – f(3) = 4 - 3

Página 48

Page 49: Caderno Matematica - Rosane de Fátima Worm

Intervalo de 4 até 5 = f(5) – f(4) = 5 - 4 Notamos que com o passar do tempo, as taxas de variação médias da produção aumentam e, como a produção

é crescente, concluímos que a produção é crescente a taxas crescentes.

• A expressão OBSERVAÇÃO:

∆y ∆x

também é chamada de Razão Incremental.

∆y = f( x2 ) – f( x1 ) ou ∆y = f( x1 + ∆x ) - f( x1 ) . ∆x x2 - x1 ∆x x2 – x

• ∆x = x

1

2 – x1 • ∆y = f( x

denominado incremento da variável x. 2 ) – f( x1

) denominado incremento da função y = f(x)

Exemplos: 1. Seja a função f tal que f(x) = 3x + 1, com x є R. Sejam x1 = 1 e x1 + ∆x = 4 logo ∆x = 3 Então: f( x1 ) = 4 e f( x1 + ∆x ) = 13 Logo, ∆y = f( x1 + ∆x ) - f( x1 ) . = 13 – 4 = 9

2. Sejam a função f tal que f( x) = x² + 5 , x є R. Se x

= 3 ∆x ∆x 3 3

1 = 2 e x1 + ∆x = 4 temos ∆x = 2 Então: f( x1 ) = 9 e f( x1 + ∆x ) = 21

Página 49

Page 50: Caderno Matematica - Rosane de Fátima Worm

Logo, ∆y = f( x1 + ∆x ) – f ( x1 ) = 21 – 9 = 12 = 6 ∆x ∆x 2 2 3. Seja a função f tal que f( x ) = x³ - 1, x є R. Se x1 = 4 e x1 + ∆x = 0, temos ∆x = -4 Então f( x1 ) = 63 e f( x1 + ∆x ) = -1 Logo, ∆y = f( x1 - ∆x ) - f( x1 ) = -1 – 63 = 16 ∆x ∆x -4 Exercícios:

1. Calcular a taxa média de variação das seguintes funções entre os pontos indicados:

a) y = 4 2 e 4 b) y = -5 1 e 1,2 c) y = -x 5 e 8 d) y = -x -1 e 4 e) y = 4x 2 e 3 f) y = -4x 2 e 5 g) y = x + 1 4 e 10 h) y = x + 1 -2 e 6 i) y = 2x + 3 -5 e 5 j) y = -4x + 5 0 e 10 l) y = x² 0 e 3 m) y = x² + x -1 e 1 n) y = ½ x² + x – 1 10 e 12 o) y = 1 – 1/x 2 e 5 2. Se y = 3x² - 5, determine a variação ∆ y para x1 = 2 e ∆ x = 8 3. Se y = 2x² - 4x + 5, calcule a variação ∆ y para x1 = 3 e ∆ x = 5 4. Determinar a razão incremental da função f( x ) = 2x + 3, relativa ao ponto x1 = 3

Página 50

Page 51: Caderno Matematica - Rosane de Fátima Worm

DERIVADA DE UMA FUNÇÃO

Definição: Seja f uma função definida num intervalo aberto ] a, b [ e x1 um ponto deste intervalo, o limite, lim ∆y = lim f ( x1 + ∆x ) – f( x1 ) , ∆x →0 ∆x ∆x →0 ∆x

quando existe, isto é, quando é um número real, recebe o nome de derivada da função f no ponto x1. Neste caso, dizemos também que f é derivável no ponto x1. A derivada de f no ponto x1 será indicada por uma das seguintes notações:

f ‘(x1) , df (x1) , dy (x1) ou ainda por y ‘(x1) dx dx Exemplos: 1) Seja y = f(x) = x² e x1 = 2. A taxa média de variação entre os pontos 2 e 2 + ∆x é:

2. Dada a função f(x) = 3x² + 12, calcular o valor da expressão lim ∆y , sendo x1 = 5 ∆x→0 ∆x Exercícios: 1. Calcule a derivada de cada uma das seguintes funções, nos pontos indicados: a) y = 2x + 1 x1 = 4 b) y = 1 x1 = 4 x c) y = 1 x1 = 5 x + 1

d) y = x x1 = 2 x + 1 e) y = 3x² x1 = 2

Página 51

Page 52: Caderno Matematica - Rosane de Fátima Worm

Função Derivada

Seja f uma função derivável em todo ponto x de um intervalo aberto Ι . A função que a todo x associa o número f’(x) recebe o nome de função derivada de f em Ι e será indicada por uma das notações:

f’, dxdf ,

dxdf ou y’

Exemplos: 1) Se f(x) =x2

temos: Portanto, f é derivável em todo ponto x IR com derivada 2x. Assim, a derivada de f é a função f’ tal que

f’(x)=2x. 2) Derive f(x) =x3

Portanto f’(x) =3x2 ∈, qualquer que seja x IR.

Página 52

Page 53: Caderno Matematica - Rosane de Fátima Worm

Aula 11 – Matemática Aplicada – 03/11/10 Profª Rosane Worm

a) Derivada da função constante DERIVADAS FUNDAMENTAIS

f(x)=c ⇒ f’(x)=0 Ex.: a) f(x)= 5 ⇒ f’(x)= 0 b) Derivada da função potência f(x)= xn ⇒ f’(x)= n.xn-1

a) f(x)=x2 ⇒ f’(x)= 2.x2-1= 2x b) f(x)=x ⇒ f’(x)= 1.x1-1=1.xº=1

c) f(x)=x3/4⇒ f’(x)=3/4x3/4-1=3/4.x-1/4 c) Derivada do produto de uma constante por uma função g(x)=c.f(x) ⇒ g’(x)= c.f’(x) a) g(x)=5x3 ⇒ g’(x)=5.3.x3-1= 15x2

b) f(x)=2/3x12 ⇒ f’(x)=2/3.12.x12-1=8x11 d) Derivada da função f(x)=senx f(x)=senx ⇒ f’(x)=cosx a)f(x)=3senx ⇒ f’(x)=3cosx e) Derivada da função f(x)=cosx f(x)=cosx ⇒ f’(x)=-senx a) f(x)=5cosx ⇒ f’(x)=5.(-senx)=-5senx

a) Derivada de uma soma de funções PROPRIEDADES OPERATÓRIAS

y=u+v ⇒y’=u’+v’ y=u-v ⇒ y’=u’-v’ Ex.: f(x)=4x3-2x2+5x+1 ⇒ f’(x)=4.3.x3-1-2.2.x2-1+5.x1-1+0 ⇒ f’(x)=12x2-4x+5 b) Derivada de um produto de funções y=u.v ⇒ y’=u’.v+v’.u Ex: Calcular a derivada (2+5x)(7-3x) u’=5 e v’=-3 y’= 5.(7-3x)+(-3)(2+5x) ⇒y’=35-15x-6-15x ⇒ y’=-30x+29

c) Derivada de um quociente de funções

y=u/v ⇒ y’= u’.v-v’.u

Página 53

Page 54: Caderno Matematica - Rosane de Fátima Worm

v2

Ex.: Dada a função f(x)= x2+1, calcular f’(x) x-3 u= x2+1 ⇒ u’=2x v= x-3 ⇒ v’=1 f’= 2x(x-3)-1.(x2+1) f’= x2-6x-1 (x-3)2 x2-6x+9

y=gDERIVADA DA POTÊNCIA DE UMA FUNÇÃO

n ⇒ y’=n.gn-1.g’ Ex.: Dada a função f(x)=(2x+1)4, calcular f’(x) g(x)= 2x+1 g’(x)= 2 y’= 4.g4-1.g’ ⇒ y’= 4.(2x+1)4-1.2 ⇒ y’= 8.(2x+1)

3

Exercícios

1. Calcular a derivada de cada uma das funções seguintes:

a) 54 += xy

b) 221

+= xy

c) 7521 2 ++−= xxy

d) 23 xxy +=

e) 32 45 xxy +−=

f) 5

34 xxxy +−=

g) 562

2110 xxxy ++−=

2. Derive as funções:

a) 2042 23 +++= qqqC (Custo)

b) 326 qqR −= (Receita)

c) 3613 24 −+−= qqL (Lucro)

3. Seja 1282 −+−= xxy

h) 9

3 67 xxy −=

i) 6

23 xy =

j) 162 2 ++= xxy

l) 5,02+=

xy

m) 52 )4( += xy

n) 8)2( xy −=

d) 1002 +−= pq (Demanda)

Página 54

Page 55: Caderno Matematica - Rosane de Fátima Worm

a) Faça o gráfico da função e determine o ponto da curva em que a tangente é paralela ao

eixo dos x . Qual o valor da função nesse ponto?

b) Determine os intervalos de crescimento e decrescimento da função.

c) Resolva as inequações 0>′y e 0<′y .

4. Seja a função 862 +−= xxy

a) Faça seu gráfico.

b) Determine sua derivada.

c) Determine a inclinação da curva nos pontos 5,4,3,2,1,0 ====== xxxxxx e 6=x .

d) Com base nos valores encontrados em )(C e observando o gráfico, determine para que

valores de x a inclinação da curva é positiva, para que valores é negativa e para que

valores é nula.

Página 55

Page 56: Caderno Matematica - Rosane de Fátima Worm

Aula 12 – Matemática Aplicada- 10/11/10

Profª Rosane Worm

Aplicações das derivadas nas áreas Econômicas e Administrativa

Funções Marginais Exemplo“Em uma indústria de eletroeletrônicos, na produção de q quantidades de um certo tipo de aparelho, o custo C em reais foi estudado e pôde-se estabelecer que C= 0,1q

: Para entender o significado do termo “marginal”, vamos analisar a seguinte situação:

3 – 18q2

a) qual o custo quando são produzidos 50 aparelhos? + 1.500q + 10.000.

b) Qual o custo na produção do 51º aparelho? c) Qual a taxa de variação do custo em relação à quantidade q = 50? 1. Em uma empresa de confecção têxtil, o custo, em reais, para produzir q calças é dado por C(q) = 0,001q3 – 0,3q2

a) Obtenha a função custo Marginal. + 45q + 5.000.

b) Obtenha o custo marginal aos níveis q= 50, q= 100 e q= 200, explicando seus significados. c) Calcule o valor real para produzir a 201ª calça e compare o resultado com o obtido no item anterior. 2. Em uma fábrica de pneus, o preço de um tipo de pneu é dado por p = -0,4q + 400. (Vale lembrar que a receita na venda de um produto é dada por R= pxq, onde p é o preço em função da quantidade demandada). a) Obtenha a função receita. b) Obtenha a função receita marginal. c) Obtenha a receita marginal aos níveis q = 400, q=500 e q=600, interpretando seu significado.

Página 56

Page 57: Caderno Matematica - Rosane de Fátima Worm

3. Uma empresa de pneus tem a receita na venda de um tipo de pneu dada por: R(q) = -0,4q2

( 0 ≤ x ≥1.000). Suponha que o custo para a produção dos pneus é dada por C(q) = 80q + 28.000. + 400q

a) Obtenha a função lucro. b) Obtenha a função Lucro Marginal. c) Obtenha o lucro marginal aos níveis q = 300 e q = 600 interpretando os resultados. 4. Na fabricação de um produto, o custo, em reais, para produzir q unidades é dado por C(q) = 0,1q3 – 3q2

a) Obtenha a função custo Marginal. + 36q + 100.

b) Obtenha o custo marginal aos níveis q = 5, q =10 e q =15, explicando seus significados. c) Calcule o valor real para produzir a 11ª unidade e compare o resultado com o obtido no item anterior. 5. Em uma empresa, o custo, em reais, para produzir q unidades de televisores é dado por C(q) = 0,02q3 – 6q2

a) Obtenha a função custo marginal. + 900q + 10.000.

b) Obtenha o custo marginal aos níveis q=50, q=100 e q= 150 explicando seus significados. c) Calcule o valor real para produzir a 101ª unidade e compare o resultado com o obtido no item anterior. 6. Em uma fábrica de ventiladores, o preço de um tipo de ventilador é dado por p= -2q + 800, onde 0 ≤ q ≤ 400. a) Obtenha a função receita. b) Obtenha a função receita marginal c) Obtenha a receita marginal aos níveis q = 100, q = 200 e q = 300, interpretando seus significados.

Página 57

Page 58: Caderno Matematica - Rosane de Fátima Worm

d) esboce o gráfico da receita. 7. Em uma indústria têxtil, o preço de um tipo de toalha é dado por p = 0,001q + 10, onde 0 ≤ q ≤ 10.000. a) Obtenha a função receita. b) Obtenha a função receita marginal c) Obtenha a receita marginal nos níveis q= 4.000, q= 5.000 e q= 6.000, interpretando o resultado.

Se f(x) é uma função derivada da função F(x), então F(x) chama-se primitiva de f(x), isto

é, F(x) é primitiva de f(x) se:

INTEGRAIS

F’(x) = f(x) Tome-se, como exemplo, a função f(x) = 3x² - 2x + 5. Uma primitiva de f(x) é a função

F(x) = x³ - x² + 5x, pois F’(x) = f(x).

A primitiva de uma função não é única. De fato, as funções: x³ - x² + 5x + 10 e x³ - x² + 5x

– 25 também são primitivas de f(x) = 3x² - 2x + 5, pois suas derivadas são iguais a f(x).

É fácil perceber que a diferença entre duas primitivas de uma mesma função é uma

constante, pois só funções que diferem de uma constante podem ter derivadas iguais, uma vez

que só as constantes tem derivadas nulas.

Pode-se, por essa razão, indicar genericamente a primitiva de f(x) por F(x) + C, onde C é

uma constante qualquer.

A notação usada para exprimir que F(x) + C é a primitiva genérica de f(X) é:

∫f(x) dx = F(x) + C

Página 58

Page 59: Caderno Matematica - Rosane de Fátima Worm

Lê-se: a integral indefinida de f(x) é F(x) + C. A constante C é chamada constante de

integração.

Assim, o exemplo fica:

∫(3x² - 2x + 5)dx = x³ - x² + 5x + C

Nem sempre é fácil determinar a primitiva de uma função, mas algumas vezes podem ser

determinadas de forma imediata desde que se proceda seguindo o caminho inverso ao usado

para derivar uma função.

Quando integramos a diferencial de uma função, obtemos a própria função mais uma

constante arbitrária.

FÓRMULA DAS PRIMITIVAS ∫axndx = axn + 1

n + 1 .++ C

1 – Calcule as seguintes integrais

a) dxx∫ 5

b) dxx∫ 43

c) dxx∫ 2

1

d) ∫ dx5

e) dttt )253( 2 +−∫

f) dxxx∫

++ 1

41 24

g) dxxx∫

+− 53

51

h) dxxx∫

+− 4

712

Página 59

Page 60: Caderno Matematica - Rosane de Fátima Worm

i) ( )∫ +++ dxxxx 123

j) ∫

+− dxxx 10

51

81 23

l) ∫ (3x2

m) ∫ (4x

– 4x + 5) dx

3 – 6x2

n) ∫ ( x

+ 10)dx

2

o) ∫(x

+ x + 1 ) dx

3

p)∫ x

+ 2x + 3) dx

2

q) ∫(x dx

2 + x4

r) ∫ (x) dx

5 + x2

s) ∫ 5x

+ 4)dx

3

t) ∫(6x

dx

2

+ 3x)dx

Página 60