brocas helicoidais formação do cavaco na furação forças e potências de corte na furação...

51
Brocas Helicoidais Formação do cavaco na furação Forças e Potências de Corte na Furação Resistência de uma Broca Helicoidal e Avanço Máximo Permissível Brocas Especiais para Furos Longos Cap. 11- Furação Prof.: M.Sc. Antonio Fernando de Carvalho Mota

Upload: internet

Post on 16-Apr-2015

111 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Brocas Helicoidais Formação do cavaco na furação Forças e Potências de Corte na Furação Resistência de uma Broca Helicoidal e Avanço Máximo Permissível

Brocas HelicoidaisFormação do cavaco na furaçãoForças e Potências de Corte na FuraçãoResistência de uma Broca Helicoidal e Avanço Máximo PermissívelBrocas Especiais para Furos Longos

Cap. 11- Furação

Prof.: M.Sc. Antonio Fernando de Carvalho Mota

Page 2: Brocas Helicoidais Formação do cavaco na furação Forças e Potências de Corte na Furação Resistência de uma Broca Helicoidal e Avanço Máximo Permissível

Furação O processo de furação é um dos mais usados na indústria

manufatureira. A grande maioria das peças de qualquer tipo de indústria tem pelo menos um furo e, somente uma parte muito pequena dessas peças já vem com o furo pronto do processo de obtenção da peça bruta (fundição, forjamento, etc...).

Furadeira SensitivaFuradeira Radial

Page 3: Brocas Helicoidais Formação do cavaco na furação Forças e Potências de Corte na Furação Resistência de uma Broca Helicoidal e Avanço Máximo Permissível

Formas construtivas das brocas helicoidaisAs diversas partes de uma broca helicoidal são:A) Haste Destina-se à fixação da broca na máquina. Em brocas de

diâmetro pequeno (até 15mm) usa-se brocas de haste cilíndrica. E a fixação à máquina se dá por intermédio de mandris. Em brocas de diâmetros maiores, prefere-se prender a broca a um cone morse, que por sua vez é preso à máquina o que possibilita maior força de fixação.

HASTE

Page 4: Brocas Helicoidais Formação do cavaco na furação Forças e Potências de Corte na Furação Resistência de uma Broca Helicoidal e Avanço Máximo Permissível

Formas construtivas das brocas helicoidaisB) Diâmetro

É medido entre as duas guias da broca. Normalmente tem tolerância dimensional h8.

C) núcleo

Parte interior da broca. De diâmetro igual a 0.16 D. Serve para conferir rigidez à broca.

Page 5: Brocas Helicoidais Formação do cavaco na furação Forças e Potências de Corte na Furação Resistência de uma Broca Helicoidal e Avanço Máximo Permissível

Formas construtivas das brocas helicoidaisD)GuiasA superfície externa de uma broca helicoidal

apresenta duas regiões (uma em cada aresta de corte) que tem diâmetro maior que o diâmetro das paredes da broca. Tais regiões são denominadas guias. Têm a função de guiar a broca dentro do furo e evitar que toda a parede externa da broca atrite com a parede do furo.

GUIA

Page 6: Brocas Helicoidais Formação do cavaco na furação Forças e Potências de Corte na Furação Resistência de uma Broca Helicoidal e Avanço Máximo Permissível

Formas construtivas das brocas helicoidaisE)Canais helicoidaisSão as superfícies de saída da ferramenta.

CANAIS HELICOIDAIS

Page 7: Brocas Helicoidais Formação do cavaco na furação Forças e Potências de Corte na Furação Resistência de uma Broca Helicoidal e Avanço Máximo Permissível

Formas construtivas das brocas helicoidaisF)Arestas de corteAs duas arestas principais de corte não se

encontram em um ponto, mas existe uma terceira aresta ligando-as chamada de aresta transversal de corte.

ARESTA DE CORTE

Page 8: Brocas Helicoidais Formação do cavaco na furação Forças e Potências de Corte na Furação Resistência de uma Broca Helicoidal e Avanço Máximo Permissível

Características da formação do cavaco na furaçãoSe os cavacos não forem formados de

maneira tal que propiciem sua fácil retirada do interior do furo, eles podem causar o entupimento do mesmo, aumentando o momento torsor necessário, quebra da ferramenta, e provavelmente a perda da peça.

Page 9: Brocas Helicoidais Formação do cavaco na furação Forças e Potências de Corte na Furação Resistência de uma Broca Helicoidal e Avanço Máximo Permissível

Características da formação do cavaco na furação

Assim é fundamental induzir a formação de cavacos que tenham uma forma tal que sejam de fácil remoção do furo. Se o cavaco formado for em fita será muito difícil extraí-lo do furo. Cavacos helicoidais ou em lascas são os que mais facilmente podem ser removidos dos furos. A remoção pode ser auxiliada por um ciclo de furação queretire frequentemente a broca de dentrodo furo e/ou pelo insuflamento de fluidode corte sob pressão no fundo do furo através de canais especiais construídos na broca para tal fim.

Page 10: Brocas Helicoidais Formação do cavaco na furação Forças e Potências de Corte na Furação Resistência de uma Broca Helicoidal e Avanço Máximo Permissível

A velocidade de corte diminui à medida que se caminha da periferia para o centro da broca, já que ela depende do diametro. Assim, quando materiais dúteis são furados em cheio ( sem pré furação), a formação de aresta postiça de corte na vizinhança do centro da broca é inevitável. Contudo se aumentar-se a velocidade de corte para prevenir a formação da aresta postiça de corte , causar-se-á um desgaste maior na periferia da broca.

Page 11: Brocas Helicoidais Formação do cavaco na furação Forças e Potências de Corte na Furação Resistência de uma Broca Helicoidal e Avanço Máximo Permissível

• O ângulo de saída das brocas helicoidais diminui no sentido da periferia para o centro da broca, sendo que se tem ângulos bastante negativos próximo ao centro. Este fato, somado aos baixos valores da velocidade de corte e de ângulo efetivo de folga e à presença da aresta transversal de corte, faz com que as condições de corte nesta região sejam bem desfavoráveis. Por este motivo a força de avanço resulta alta, gerando deformação da broca e do eixo árvore e consequentemente desvio de forma e posição do furo. Outra consequencia dessa dificuldade de realização do corte é a deformação plástica do material do fundo do furo, causando encruamento em materiais dúteis o que aumenta ainda mais a força de avanço necessária.

Page 12: Brocas Helicoidais Formação do cavaco na furação Forças e Potências de Corte na Furação Resistência de uma Broca Helicoidal e Avanço Máximo Permissível

Uma das ações adotadas para reduzir este problema é o chanframento da aresta transversal de corte, que além de diminuir o tamanho desta aresta, aumenta o ângulo de saída da ferramenta nesta região.

Outra ação é a usinagem de um pré-furo com diâmetro maior que a aresta transversal de corte.

Page 13: Brocas Helicoidais Formação do cavaco na furação Forças e Potências de Corte na Furação Resistência de uma Broca Helicoidal e Avanço Máximo Permissível

Forças e potencias de corte na furaçãoDurante o processo de furação oobservamm-se

as seguintes resistencias à penetração da broca:

A) Resistencia devido ao corte do material devido às duas arestas de corte

B) Resistencia devido ao corte e esmagamento do material na aresta transversal de corte

C) Resistencia devido ao atrito das guias com a a parede do furo e entre a superficie de saida da broca e do cavaco

Page 14: Brocas Helicoidais Formação do cavaco na furação Forças e Potências de Corte na Furação Resistência de uma Broca Helicoidal e Avanço Máximo Permissível

• Para se estimar os esforços de um processo de furação, basta calcular-se o momento torsor e a força de avanço do processo.

• Mtotal = Mta + Mtb + Mtc• Ftotal = Fta + Ftb + Ftc

• Mt = Momento torsor• Ft = Força de avanço• A, b e c = Contribuição das resistencias a, b e c

citadas anteriormente

Page 15: Brocas Helicoidais Formação do cavaco na furação Forças e Potências de Corte na Furação Resistência de uma Broca Helicoidal e Avanço Máximo Permissível

A participação percentual de cada uma dessas grandezas, oscila entre os seguintes valores:

Page 16: Brocas Helicoidais Formação do cavaco na furação Forças e Potências de Corte na Furação Resistência de uma Broca Helicoidal e Avanço Máximo Permissível

Calculo dos esforços de corte Formulas experimentais• A) formula de Kronnenberg para

determinação do momento torsor na furação em cheio

D = diametro da broca mmF = avanço por volta (mm/volta)C1, X1 e Y1 = constantes empíricas do

material da peça

Page 17: Brocas Helicoidais Formação do cavaco na furação Forças e Potências de Corte na Furação Resistência de uma Broca Helicoidal e Avanço Máximo Permissível

Calculo dos esforços de corte Formulas experimentaisCoeficientes da equação de Kronnenberg

AÇO C1 X1 Y1

1085 30.2 +- 0.5 2.05 0.86

1020 15.1 +- 0.4 2.22 0.76

1065 24.3 +- 0.9 2.05 0.83

1055 21.9 +- 0.3 2.01 0.77

1025 37.9 +- 0.6 1.87 0.77

52100 46.8 +- 1.2 1.97 0.77

VM 20 48.6 +- 1.2 1.77 0.72

VND 26.2 +- 0.8 2.13 0.78

VS 60 10.9 +- 0.8 2.33 0.70

Page 18: Brocas Helicoidais Formação do cavaco na furação Forças e Potências de Corte na Furação Resistência de uma Broca Helicoidal e Avanço Máximo Permissível

Calculo dos esforços de corte Formulas experimentaisFormula de H. Daar para determinação da

força de avanço na furação em cheio

C2, x2, y2 = constantes empíricas do material da peça

Page 19: Brocas Helicoidais Formação do cavaco na furação Forças e Potências de Corte na Furação Resistência de uma Broca Helicoidal e Avanço Máximo Permissível

Calculo dos esforços de corte Formulas experimentaisCoeficientes c2, x2, e y2 da equação de H.

DaarAÇO C2 X2 Y2

1085 161 +- 8 1.02 0.79

1020 32.5 +- 0.4 1.32 0.65

1065 49.6 +- 0.8 1.07 0.54

1055 22.0 +- 0.5 1.32 0.54

1025 33.4 +- 0.0 1.21 0.60

52100 41.9 +- 0.8 1.41 0.66

VM20 27.3 +- 0.6 1.3 0.59

VND 55.1 +- 1.4 1.29 0.72

VS60 42.7 +- 1.0 1.35 0.70

Page 20: Brocas Helicoidais Formação do cavaco na furação Forças e Potências de Corte na Furação Resistência de uma Broca Helicoidal e Avanço Máximo Permissível

Calculo dos esforços de corte Formulas experimentais

Formula de H. Daar para determinação do momento torsor na furação com Pré-furação

D0 = diametro do pré-furoC3, z3 e x3 = constantes empíricas do

material da peça

Page 21: Brocas Helicoidais Formação do cavaco na furação Forças e Potências de Corte na Furação Resistência de uma Broca Helicoidal e Avanço Máximo Permissível

Calculo dos esforços de corte Formulas experimentaisCoeficientes c3, 1-z3 e x3 da equação de H.

DaarAÇO C3 1-Z3 X3

1085 27.6 0.71 1.9

1020 24.1 0.77 1.6

1065 18.9 0.70 2.1

1055 20.2 0.66 1.7

1025 22.0 0.74 1.9

52100 34.8 0.70 2.5

VM20 21.7 0.70 1.9

VND 37.6 0.78 1.9

VS60 47.5 0.69 0.5

Page 22: Brocas Helicoidais Formação do cavaco na furação Forças e Potências de Corte na Furação Resistência de uma Broca Helicoidal e Avanço Máximo Permissível

Calculo dos esforços de corte Formulas experimentaisFormula de H. Daar para determinação da

força de avanço na furação com pré-furação

C4, x4, y4 = constantes empíricas do material da peça

Page 23: Brocas Helicoidais Formação do cavaco na furação Forças e Potências de Corte na Furação Resistência de uma Broca Helicoidal e Avanço Máximo Permissível

Calculo dos esforços de corte Formulas experimentaisCoeficientes da equação de H. Daar para

obtenção da força de avanço na furação com pré-furação.

AÇO C4 1-Y4 X4

1085 38 0.51 0.9

1020 112 0.61 0.2

1065 27.8 0.44 0.6

1055 38 0.38 0.4

1025 41.5 0.57 0.6

52100 64.4 0.54 1.2

VM20 46 0.54 0.5

VND 93.5 0.68 0.6

VS60 69 0.40 0.2

Page 24: Brocas Helicoidais Formação do cavaco na furação Forças e Potências de Corte na Furação Resistência de uma Broca Helicoidal e Avanço Máximo Permissível

Calculo do avanço máximo permissível levando-se em conta a resistência da brocaA tensão ideal resultante da ação conjunta de

um momento torsor e de uma força de compressão pode ser dado por:

A tensão admissivel para uma broca e aço rapido é 25 kgf/mm2

Usando-se as equações 11.3 e 11.7 e a tensao admissivel tem-se:

Page 25: Brocas Helicoidais Formação do cavaco na furação Forças e Potências de Corte na Furação Resistência de uma Broca Helicoidal e Avanço Máximo Permissível

Calculo do avanço máximo levando-se em conta a força de penetração máxima da furadeiraEm furadeiras radiais costuma-se tomar como

a força máxima aquela que produz no braço da máquina uma flecha de 1.5mm por metro de braço

Segundo a equação 11.4 tem-se Se Ff for a força de penetração máxima da

furação (Ffmax) tem-se que

Page 26: Brocas Helicoidais Formação do cavaco na furação Forças e Potências de Corte na Furação Resistência de uma Broca Helicoidal e Avanço Máximo Permissível

Brocas especiais para furos longos

Tanto as brocas helicoidais de aço rápido quanto as de metal duro inteiriças ou com pastilhas intercambiáveis são aplicáveis somente para furação de furos curtos com diâmetros pequenos e médios. Para furos profundos e/ou diâmetros grandes necessita-se usar brocas especiais para este fim. São elas:

Page 27: Brocas Helicoidais Formação do cavaco na furação Forças e Potências de Corte na Furação Resistência de uma Broca Helicoidal e Avanço Máximo Permissível

Brocas especiais para furos longos

A) Broca canhãoCom remoção externa de cavaco, destinadas a

furos com diâmetro de 3 a 20mm. Normalmente são dotadas de pastilhas de metal duro em sua parte cortante. Realiza furos muito compridos com qualidade IT9.

Page 28: Brocas Helicoidais Formação do cavaco na furação Forças e Potências de Corte na Furação Resistência de uma Broca Helicoidal e Avanço Máximo Permissível

Brocas especiais para furos longos

B) Broca canhão com remoção interna de cavaco

Também chamadas de brocas BTA. Destinadas a furos de diâmetros de 18 a 64 mm com comprimento até 1 m. realiza furos com qualidade IT10.

Page 29: Brocas Helicoidais Formação do cavaco na furação Forças e Potências de Corte na Furação Resistência de uma Broca Helicoidal e Avanço Máximo Permissível

Brocas especiais para furos longos

C) Brocas EJECTORSua cabeça é idêntica à da broca BTA, difere desta

pelo sistema de retirada do cavaco. O sistema de condução do fluido de corte sob pressão até a região de corte é constituído de dois tubos concêntricos. Na broca EJECTOR, o tubo interno possui alguns furos em sua parede que permitem que parte do óleo que está a caminho da cabeça da broca pelo tubo externo, retorne pelo interno, gerando uma pressão negativa neste tubo que ajuda na retirada do cavaco.

Page 30: Brocas Helicoidais Formação do cavaco na furação Forças e Potências de Corte na Furação Resistência de uma Broca Helicoidal e Avanço Máximo Permissível

Brocas especiais para furos longos

D) Brocas ocas de trepanaçãoQuando o furo é muito grande( acima de 120mm)

e não se tem um pré-furo realizado em operação anterior, a furação com a broca helicoidal causaria grande desperdício de material na forma de cavaco e consumiria muito tempo de usinagem. Para este caso tem-se como opção as brocas ocas para trepanação, que somente usinam a periferia do furo, mantendo intacto o material da parte central. É lógico que este tipo de broca só pode ser usado em furos passantes.

Page 31: Brocas Helicoidais Formação do cavaco na furação Forças e Potências de Corte na Furação Resistência de uma Broca Helicoidal e Avanço Máximo Permissível

Brocas com Dois Helicoidais

Page 32: Brocas Helicoidais Formação do cavaco na furação Forças e Potências de Corte na Furação Resistência de uma Broca Helicoidal e Avanço Máximo Permissível

Brocas com Quatro Canais Retos

Page 33: Brocas Helicoidais Formação do cavaco na furação Forças e Potências de Corte na Furação Resistência de uma Broca Helicoidal e Avanço Máximo Permissível

Brocas para Furar e Escariar

Page 34: Brocas Helicoidais Formação do cavaco na furação Forças e Potências de Corte na Furação Resistência de uma Broca Helicoidal e Avanço Máximo Permissível

Brocas para Pinar Tabuleta

Page 35: Brocas Helicoidais Formação do cavaco na furação Forças e Potências de Corte na Furação Resistência de uma Broca Helicoidal e Avanço Máximo Permissível

Brocas Helicoidais Haste Lisa

Page 36: Brocas Helicoidais Formação do cavaco na furação Forças e Potências de Corte na Furação Resistência de uma Broca Helicoidal e Avanço Máximo Permissível

FURAÇÃO

complementação

Page 37: Brocas Helicoidais Formação do cavaco na furação Forças e Potências de Corte na Furação Resistência de uma Broca Helicoidal e Avanço Máximo Permissível

Junto com fresamento e torneamento, operação de usinagem mais utilizada na indústria;

Operação de desbaste (provém fraco acabamento superficial);

Rotação ocorre no eixo da ferramenta, com avanço perpendicular à superfície a ser furada;Usado em conjunto com grande parte dos processos

de fabricação a fim de prover elementos de fixação,

muitas vezes de importância secundária;

FURAÇÃO

Page 38: Brocas Helicoidais Formação do cavaco na furação Forças e Potências de Corte na Furação Resistência de uma Broca Helicoidal e Avanço Máximo Permissível

Estima-se que o consumo de brocas seja da ordem de 250 milhões de unidades por ano.

No Brasil, apesar do avanço ocorrido no desenvolvimento dos materiais das ferramentas de furação, tais como: brocas de aço rápido com revestimentos, brocas inteiriças de metal duro e brocas com pastilhas intercambiáveis de metal duro, mais da metade

das operações de furação ainda

são realizadas com brocas

helicoidais de aço rápido.

FURAÇÃO

Page 39: Brocas Helicoidais Formação do cavaco na furação Forças e Potências de Corte na Furação Resistência de uma Broca Helicoidal e Avanço Máximo Permissível

OPERAÇÕES DE FURAÇÃO

Page 40: Brocas Helicoidais Formação do cavaco na furação Forças e Potências de Corte na Furação Resistência de uma Broca Helicoidal e Avanço Máximo Permissível

BROCAS

Page 41: Brocas Helicoidais Formação do cavaco na furação Forças e Potências de Corte na Furação Resistência de uma Broca Helicoidal e Avanço Máximo Permissível

MOVIMENTOS EM FURAÇÃO

Page 42: Brocas Helicoidais Formação do cavaco na furação Forças e Potências de Corte na Furação Resistência de uma Broca Helicoidal e Avanço Máximo Permissível

MOVIMENTOS EM FURAÇÃOVELOCODADE DE CORTE:

VELOCIDADE DE AVANÇO:

VELOCIDADE EFETIVA:

1000

dnV C

fd

fn VV cc

..1000

VVV fce

22

Page 43: Brocas Helicoidais Formação do cavaco na furação Forças e Potências de Corte na Furação Resistência de uma Broca Helicoidal e Avanço Máximo Permissível

BROCA HELICOIDALFerramenta mais utilizada para a execução de furos.

Pode ser dividida em 3 partes:

Corpo – parte da broca que contém os canais

helicoidais. Ponta – onde se localizam as arestas principais e

transversal de corte;Haste – onde é feita a fixação da ferramenta.

Page 44: Brocas Helicoidais Formação do cavaco na furação Forças e Potências de Corte na Furação Resistência de uma Broca Helicoidal e Avanço Máximo Permissível

Comparação entre umabroca helicoidal e umaferramenta detorneamento

BROCA HELICOIDAL

Page 45: Brocas Helicoidais Formação do cavaco na furação Forças e Potências de Corte na Furação Resistência de uma Broca Helicoidal e Avanço Máximo Permissível

Haste;Diâmetro (D) – medido entre as guias da broca;Núcleo – parte central da broca. Confere a rigidez

necessária.Guias – “ressaltos” observados na superfície externa da

broca. Têm as funções de guiar a ferramenta e reduzir o atrito desta com o furo.

Canais helicoidais – superfícies de saída da ferramenta.Ângulo de hélice na periferia da broca coincide com o

ângulo de saída.Arestas de corte – as arestas principais se encontram

em uma região que forma a aresta transversal de corte.

BROCAS HELICOIDAIS-FORMAS CONSTRUTIVAS

Page 46: Brocas Helicoidais Formação do cavaco na furação Forças e Potências de Corte na Furação Resistência de uma Broca Helicoidal e Avanço Máximo Permissível

Ângulo de ponta (σ)– ângulo entre as arestas principais de corte. Normalmente igual a 118°, ou 140° para materiais moles.

Ângulo de folga (αf) – medido no plano de trabalho, varia usualmente entre 12 e 15°. Relaciona-se com o ângulo da aresta transversal.

Ângulo da aresta transversal (ψ) – ângulo observado entre as aresta principal de corte e a

aresta transversal.

Para os valores dados de αf,

varia entre 45 e 55°.

PRINCIPAIS ÂNGULOS EM FURAÇÃO

Page 47: Brocas Helicoidais Formação do cavaco na furação Forças e Potências de Corte na Furação Resistência de uma Broca Helicoidal e Avanço Máximo Permissível

O ângulo de hélice é o ângulo da helicóide formada pelos canais da broca.

A norma DIN 1836 classifica três tipos de brocas quanto ao ângulo de hélice:

• Tipo N (normal) para furação de aços ligados e não ligados, ferro fundido cinzento e maleável, níquel e ligas de alumínio de cavacos curtos. Ângulos δ de 18 a 30°;

• Tipo H (para materiais duros) ferro fundido com dureza superior a 240 HB; latão, ligas de magnésio. Ângulos δ de 10 a 15°;

• Tipo W (para materiais dúcteis) para cobre, alumínio e suas ligas de cavacos longos, ligas de zinco. Ângulos δ de 35 a 45°..

ÂNGULO DE HÉLICE

Page 48: Brocas Helicoidais Formação do cavaco na furação Forças e Potências de Corte na Furação Resistência de uma Broca Helicoidal e Avanço Máximo Permissível

ÂNGULO DE HÉLICE

Page 49: Brocas Helicoidais Formação do cavaco na furação Forças e Potências de Corte na Furação Resistência de uma Broca Helicoidal e Avanço Máximo Permissível

CONSIDERAÇÕES Na furação, observamos que: Vc varia desde um valor máximo na periferia até 0 no centro da broca; γ varia desde um valor igual ao ângulo de hélice na periferia até valores negativos no centro da broca; αfe diminui da periferia para o centro (pois o ângulo da direção efetiva η aumenta na direção do centro). Também o avanço causa o aumento de .η As baixas Vc´s próximas ao centro permitem a formação de APC em materiais dúcteis. Condições difíceis de usinagem no centro da broca causam esforços elevados, que podem causar flexão e flambagem da broca e eixo árvore, causando desvios dimensionais e de forma.

Page 50: Brocas Helicoidais Formação do cavaco na furação Forças e Potências de Corte na Furação Resistência de uma Broca Helicoidal e Avanço Máximo Permissível

Retirada do cavaco produzido é problemáticaCavaco em fita é de difícil remoção;Cavaco helicoidal ou em lascas são de fácil

retirada;Retirada do cavaco pode ser feita; Através da retirada periódica da ferramenta

(demanda maior tempo passivo);

Através do fluido de corte. O aumento do avanço facilita a quebra do

cavaco. Porém, causa a redução do ângulo de folga efetivo.

CONSIDERAÇÕES

Page 51: Brocas Helicoidais Formação do cavaco na furação Forças e Potências de Corte na Furação Resistência de uma Broca Helicoidal e Avanço Máximo Permissível

DESGASTE DE BROCAS

DESGASTE DE CRATERA

DESGASTE DE FALNCO