avaliaÇÃo experimental do concreto poroso quanto À

43
BRUNO ROCHA BRUNO ROCHA DE ARAUJO AVALIAÇÃO EXPERIMENTAL DO CONCRETO POROSO QUANTO À PERMEABILIDADE E RESISTÊNCIA MECÂNICA PALMAS - TO 2020

Upload: others

Post on 16-Oct-2021

21 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: AVALIAÇÃO EXPERIMENTAL DO CONCRETO POROSO QUANTO À

BRUNO ROCHA

BRUNO ROCHA DE ARAUJO

AVALIAÇÃO EXPERIMENTAL DO CONCRETO POROSO QUANTO À

PERMEABILIDADE E RESISTÊNCIA MECÂNICA

PALMAS - TO

2020

Page 2: AVALIAÇÃO EXPERIMENTAL DO CONCRETO POROSO QUANTO À

BRUNO ROCHA DE ARAUJO

AVALIAÇÃO EXPERIMENTAL DO CONCRETO POROSO QUANTO À

PERMEABILIDADE E RESISTÊNCIA MECÂNICA

Trabalho de Conclusão de Curso (TCC) I elaborado e apresentado como requisito parcial para obtenção do título de bacharel em Engenharia Civil pelo Centro Universitário Luterano de Palmas (CEULP/ULBRA). Orientador: Prof. Dr. Fábio Ribeiro

PALMAS - TO

2020

Page 3: AVALIAÇÃO EXPERIMENTAL DO CONCRETO POROSO QUANTO À

BRUNO ROCHA DE ARAUJO

AVALIAÇÃO EXPERIMENTAL DO CONCRETO POROSO QUANTO À

PERMEABILIDADE E RESISTÊNCIA MECÂNICA

Trabalho de Conclusão de Curso (TCC) I elaborado e apresentado como requisito parcial para obtenção do título de bacharel em Engenharia Civil pelo Centro Universitário Luterano de Palmas (CEULP/ULBRA). Orientador: Prof. Dr. Fábio Ribeiro

___________________________________________________

Prof. Dr. Fábio Ribeiro

Centro Universitário Luterano de Palmas

Page 4: AVALIAÇÃO EXPERIMENTAL DO CONCRETO POROSO QUANTO À

RESUMO

O concreto poroso que também é conhecido como concreto permeável é composto

por material ligante hidráulico, brita de graduação uniforme (agregado graúdo), água

e, pouco ou nenhuma quantidade de agregado miúdo. Este trabalho tem o objetivo

caracterizar e compor um traço de concreto permeável para atender as exigências

mínimas determinadas em norma, em Palmas-TO. Para o desenvolvimento deste

trabalho será realizada pesquisa bibliográfica e experimental. A parte bibliográfica

será desenvolvida a partir de livros, artigos científicos, trabalhos monográficos e,

legislação específica. A experimental será realizada através de ensaios no laboratório

de materiais do CEULP/ULBRA, em Palmas-TO. Será utilizada água potável

proveniente da rede pública de abastecimento do município de Palmas-TO. Será

utilizado o cimento do tipo Portland CPII-F-40 RS, por este ser facilmente encontrado

no município. Será utilizada a Brita 0 (ϕ 9,5 mm) e, Brita 1 (ϕ 19 mm). Será realizado

ensaio de Slump Test. Será realizada a verificação da resistência à compressão axial

dos corpos de provas cilíndricos. Será verificada a resistência à tração na flexão de

corpos de prova, em formatos prismáticos. Será realizado ensaio de permeabilidade

do concreto no estado endurecido. Os resultados dos ensaios serão apresentados em

tabelas, gráficos e imagens dos procedimentos, realizando comparações de estudos

de outros autores sobre essa temática.

Palavras-chave: Concreto poroso. Permeabilidade. Dosagem. Resistência.

Page 5: AVALIAÇÃO EXPERIMENTAL DO CONCRETO POROSO QUANTO À

SUMÁRIO

1 INTRODUÇÃO ......................................................................................................... 5

1.1 OBJETIVOS ...................................................................................................... 6

1.1.1 Objetivo Geral ............................................................................................. 6

1.1.2 Objetivos Específicos ................................................................................... 6

1.2 JUSTIFICATIVA ................................................................................................ 7

2 REVISÃO BIBLIOGRÁFICA ................................................................................ 9

2.1 PAVIMENTO DE CONCRETO SIMPLES ......................................................... 9

2.1.1 Pavimentação rígida ................................................................................. 10

2.1.2 Suporte para o pavimento de concreto ..................................................... 13

2.2 CONCRETO POROSO: CONCEITOS E ASPECTOS HISTÓRICOS ............. 13

2.3 CARACTERÍSTICAS DO PAVIMENTO PERMEÁVEL .................................. 16

2.4 PROPRIEDADES DO CONCRETO POROSO E CONVENCIONAL .............. 19

2.5 MATERIAIS CONSTITUTIVOS ....................................................................... 22

2.6.1 Agregados .................................................................................................. 25

2.6.2 Aglomerante e aditivos ............................................................................... 26

2.6.3 Abatimento (Slump Test) ........................................................................... 26

2.7 COEFICIENTE DE PERMEABILIDADE ......................................................... 27

2.8 DOSAGENS .................................................................................................... 29

3 METODOLOGIA .................................................................................................... 32

3.1 MATERIAIS .................................................................................................... 32

3.2 PARÂMETROS PARA DOSAGEM E TRAÇO DE REFERÊNCIA ................. 33

3.3 ENSAIOS E MODO DE FABRICAÇÃO ......................................................... 34

3.4 VARIÁVEIS .................................................................................................... 36

4 CRONOGRAMA .................................................................................................... 37

5 ORÇAMENTO ........................................................................................................ 38

REFERÊNCIAS ......................................................................................................... 39

Page 6: AVALIAÇÃO EXPERIMENTAL DO CONCRETO POROSO QUANTO À

5

1 INTRODUÇÃO

Com o crescimento desordenado das cidades e o aumento da

impermeabilização do solo, as soluções adotadas pelos órgãos públicos quando se

trata de drenagem pluvial é o rápido escoamento através de canalizações. Porém,

esses sistemas de drenagem se encontram muitas vezes precários, obsoletos ou

inexistentes (CASTRO, 2015).

O concreto poroso que também é conhecido como concreto permeável é

composto por cimento Portland, materiais de graduação aberta, agregado graúdo,

pouco ou nenhum fino, aditivos e água (ARAÚJO JÚNIOR et al., 2018). Sendo

bastante utilizado como material de pavimentação em países como Estados Unidos e

Europa (MONTEIRO, 2010).

No Brasil, a sua utilização ainda não é popularizada, sendo empregada por

construtores para atender legislações municipais quanto à taxa de infiltração na

pavimentação e permeabilidade de terrenos (MAZZONETTO, 2011 apud COSTA et

al., 2019).

Sua utilização na pavimentação tem a funcionalidade de capturar as águas

provenientes do escoamento superficial, devido às precipitações, aliviando os

sistemas de drenagem do local e evitando inundações urbanas (ARAÚJO JÚNIOR et

al., 2018).

De acordo a Organização das Nações Unidas, o Brasil estava entre os 15

países mais expostos à inundação, entre o ano de 2000 e 2019, com setenta

desastres que prejudicaram setenta milhões de pessoas. Os dados ainda apontam

que 1,8 milhão de brasileiros correm o risco de serem afetados com as cheias no país

(ONU, 2020).

No município de Palmas-TO têm registros de pontos de alagamentos em

rotatórias e avenidas principais, deixando várias ruas e avenidas intransitáveis, como

o que ocorre na Avenida Teotônio Segurado. Os sistemas de drenagem instalados

não suportam a quantidade de água escoada (G1 TOCANTINS, 2020).

Page 7: AVALIAÇÃO EXPERIMENTAL DO CONCRETO POROSO QUANTO À

6

Com o desenvolvimento da urbanização, retirada da vegetação natural,

impermeabilização dos solos com pavimentações e construções, acabam

comprometendo a rede de drenagem, pois estas não suportam os picos de cheias,

que é ocasionado por uma grande intensidade de chuvas. Isso gera enchentes,

causando problemas à população de um determinado município.

Para solucionar esse tipo de problema foi desenvolvido o concreto poroso, que

já é utilizado em alguns países em pavimentações, com o propósito de combater as

inundações, pois com a sua capacidade de drenar as águas do escoamento

superficial, é uma solução para sanar os problemas de alagamentos nas cidades

(SILVA et al., 2019).

O foco desta pesquisa será analisar o concreto poroso, através de ensaios

laboratoriais, para comprovar o uso deste material como uma alternativa para o

combate de alagamentos e enchentes nas cidades, principalmente no município de

Palmas-TO, que vêm sofrendo com pontos de alagamentos em ruas e avenidas da

cidade.

Neste contexto, através desse projeto será possível pesquisar dosagens de

traços de concreto poroso, como também realizar dosagem experimental, utilizando

materiais disponíveis no município de Palmas-TO. Após o estudo de dosagem será

possível apresentar o melhor traço para o concreto poroso.

1.1 OBJETIVOS

1.1.1 Objetivo Geral

Caracterizar e compor um traço de concreto permeável para atender as

exigências mínimas determinadas em norma, em Palmas-TO.

1.1.2 Objetivos Específicos

✓ Avaliar a influência da granulometria do agregado graúdo nas propriedades

físicas e mecânicas do concreto poroso;

✓ Verificar a influência da granulometria na taxa de infiltração no concreto

permeável;

Page 8: AVALIAÇÃO EXPERIMENTAL DO CONCRETO POROSO QUANTO À

7

✓ Identificar a melhor granulometria para o concreto permeável.

✓ Comparar os traços estudados para verificar quais aspectos influenciam mais

nas características avaliadas.

1.2 JUSTIFICATIVA

O concreto poroso por ser um material utilizado desde a década de 50, na

Europa, ainda é considerado como uma novidade, pois inúmeras pesquisas ainda são

desenvolvidas com aplicação em pavimentos permeáveis com o intuito de diminuir o

volume do escoamento superficial.

Considerando um aumento de pontos de alagamentos no município de Palmas-

TO, devido ao crescimento da ocupação e impermeabilização do solo, verificou-se a

necessidade de buscar materiais que proporcione o aumento da taxa de infiltração e

diminua o escoamento superficial.

A falta de planejamento de ocupação do uso do solo, o crescimento

desordenado, como também a retirada da cobertura vegetal e impermeabilização do

solo, diminui a capacidade de infiltração, resultado no aumento do escoamento

superficial, aumentando os picos de cheias e os problemas de enchentes em muitos

municípios.

Dados do Instituto Brasileiro de Geografia e Estatística (IBGE, 2019) mostram

que no Brasil, mais de 8 milhões de pessoas de 872 municípios do país, em 2010,

viviam em áreas com risco de enchentes e deslizamentos de terra. Dados de 2017,

afirmam que as áreas urbanas mais afetadas são devido à construção de moradias,

rodovias e outras obras que prejudicam a drenagem da água. Dos municípios com

mais de 500 habitantes, 93% sofreram com alagamentos e 62% com deslizamentos.

Em 2012 foram aplicados R$ 4,2 bilhões e, em 2019, R$ 306,2 milhões, do dinheiro

público, em obras de contenções de cheias, e outras obras preventivas de desastres.

Percebe-se então a importância deste projeto de pesquisa, em busca da

produção de um material poroso a ser utilizado nos pavimentos, para resolver

problemas de alagamentos e enchentes em muitas cidades, trazendo um impacto

positivo na diminuição de gastos públicos com obras de contenção, de habitação,

Page 9: AVALIAÇÃO EXPERIMENTAL DO CONCRETO POROSO QUANTO À

8

reconstrução de vias, redução de óbitos decorrentes de enchentes e

escorregamentos, dentre outros.

Com esta pesquisa será possível avaliar qual o melhor traço de concreto

permeável com a utilização de materiais locais, verificação da permeabilidade e

resistência à compressão, considerando sua aplicação para tráfego leve.

Essa pesquisa trará informações para o pesquisador, como também para os

profissionais das engenharias, principalmente a civil, a sociedade em geral e, aos

gestores do município, pois é uma alternativa para resolver os problemas de acúmulo

de água nos pavimentos da cidade.

Page 10: AVALIAÇÃO EXPERIMENTAL DO CONCRETO POROSO QUANTO À

9

2 REVISÃO BIBLIOGRÁFICA

2.1 PAVIMENTO DE CONCRETO SIMPLES

De acordo Oliveira (2000), o pavimento de concreto simples é aquele que

apenas o concreto resiste aos esforços nele solicitados, não transmitindo para a sua

fundação. Quando executado em placas de concreto, estas devem ter juntas para a

dissipação dos esforços provenientes da retração, empenamento e da dilatação

térmica.

Segundo Pitta (1988), a espessura da placa de concreto está diretamente

ligada com as tensões que atuam sobre ela. Essas forças aplicadas por ciclos

reiterados de tempo podem vir a causar no pavimento o fenômeno conhecido por

fadiga, que é o trincamento da placa causada por esses ciclos oriundos da passagem

de veículos.

De acordo com o Manual de Pavimentos Rígidos do DNIT (2005), os materiais

que compõem os pavimentos de concreto de cimento Portland são cimento Portland,

agregados graúdos, agregados miúdos, água, aditivos e materiais de selante de junta.

Ainda, segundo o Manual de Pavimentos Rígidos do DNIT (2005), o concreto

empregado em pavimentação deve apresentar uma resistência característica à tração

na flexão em torno de 4,5 MPa e uma resistência característica à compressão axial

que gira em torno de 30 MPa.

Segundo Balbo (2009), pode ser utilizado vários tipos de concreto na

construção do pavimento, sendo eles concreto convencional, concreto de alta

resistência e o concreto compactado a rolo. Deverá apresentar uma baixa variação

volumétrica, uma trabalhabilidade compatível com o equipamento que irá espalhar o

mesmo, adensamento e acabamento desejado. Com um consumo de cimento igual

ou acima de 320 kg/m³ de concreto. (DNIT, 2005)

Oliveira (2000) cita que os pavimentos de concreto simples podem ser divididos

em duas categorias, com e sem barra de transferência. E que uma placa de pavimento

de concreto simples pode possuir armadura em locais isolados, tendo a função de

evitar a fissuração e a geometria irregular. Balbo (2009) complementa que as barras

Page 11: AVALIAÇÃO EXPERIMENTAL DO CONCRETO POROSO QUANTO À

10

de transferência possuem a função de aliviar as cargas aplicadas, deslocando os

esforços para a placa subsequente.

Outro fator importante quando se trata de placas para pavimento de concreto,

é que as mesmas possuem grandes tamanhos, conforme tabela 1, e por isso sofrem

com as variações térmicas, pois possuem superfícies expostas a alterações de

umidade e temperatura. Para isso, Balbo (2009) indica a serragem de juntas

transversais e longitudinais, de igual espaçamento. Esse procedimento induz a ocorrer

à trinca nesse local em especifico.

Tabela 1- Altura, largura e comprimento das placas de concreto usadas em pavimentos de concreto

simples com e sem barras de transferência.

Altura das placas

(m)

Largura das placas

(m)

Comprimento das

placas (m)

Sem barras de

transferência 0,15 a 0,20 3 a 4 4 a 6

Com barras de

transferência 0,16 a 0,45 ≤ 7 ≤ 7

Fonte: Oliveira (2000)

Em relação ao fator água/cimento o ideal é que esse fator seja baixo, pois

se possuir muito cimento isso afetará diretamente na retração do concreto,

agravando assim o problema. Ainda, durante a concretagem, o concreto deve

possuir características, mesmo que possua consistência seca, que façam com que

o mesmo tenha trabalhabilidade, homogeneidade, densidade e impermeabilidade

adequadas (OLIVEIRA, 2000).

2.1.1 Pavimentação rígida

O pavimento rígido é aquele em que o revestimento tem uma elevada

rigidez em relação às camadas inferiores e, absorvendo todas as tensões

provenientes do carregamento aplicado. É um tipo de pavimento constituído por

lajes de concreto de cimento Portland (DNIT, 2006).

Page 12: AVALIAÇÃO EXPERIMENTAL DO CONCRETO POROSO QUANTO À

11

São tipos de pavimentos em que a espessura é determinada em função da

resistência à flexão das lajes de concreto, sendo que o revestimento é constituído

por ligantes de cimento. A mistura para a confecção do concreto é feita com

cimento Portland, areia, agregado graúdo e água, distribuído numa camada

devidamente adensada, essa camada funciona ao mesmo tempo como

revestimento e base do pavimento (DNIT, 2006).

Segundo Maciel (2017), o pavimento rígido é constituído da placa de

concreto e que normalmente são inseridas as barras de transferência. A fundação

é formada de uma camada de sub-base de solo-cimento e do subleito. As juntas

de retração são executadas após a finalização do pavimento. Alguns modelos de

pavimentos rígidos mais utilizados são: de concreto simples; de concreto com

armadura distribuída descontínua, de concreto estruturalmente armado; de

concreto protendido e com fibras.

O pavimento de concreto simples é constituído por placas de concreto que

resistem aos esforços proporcionados pelo tráfego simplesmente se apoiando na

fundação. Deve possuir alta resistência ao esforço à tração na flexão. O pavimento

simples, sem barras de aço, não é amplamente utilizado, pois suporta cargas de

menor intensidade e baixo fluxo de veículos (MACIEL, 2017).

Pavimento de Concreto com Armadura Descontínua possui armadura

destinada, para combater a fissuração proveniente da retração do concreto. O

pavimento de Concreto Continuamente Armado apresenta armadura longitudinal

contínua sem a presença de juntas transversais intermediárias de expansão ou

contração. O pavimento de Concreto Estruturalmente Armado possui barras de

transferência e telas de aço distribuídas na parte superior e inferior da placa. O

pavimento de Concreto Protendido é empregado principalmente em pavimentos

de aeroportos e pisos industriais pesados. O pavimento de Concreto com Fibras:

pavimento composto de placas de concreto com adição de fibras de aço ou

poliméricas – nylon e polipropileno (SILVA; CARNEIRO, 2014).

Estudo realizado por Koyanagawa, Yoneya e Kokubu (1994) determinaram

modelos de fadiga aplicando resistências à tração na flexão de 4,0 MPa, 5,2 MPa

e 6,0 MPa para probabilidade de ruptura por fadiga de 10% e 50%.

Page 13: AVALIAÇÃO EXPERIMENTAL DO CONCRETO POROSO QUANTO À

12

De acordo com o Manual de Pavimentos Rígidos do DNIT (2005), o concreto

do pavimento deve apresentar uma resistência característica à tração na flexão

em torno de 4,5 MPa e uma resistência característica à compressão axial que gira

em torno de 30 MPa (BOTTEON, 2017).

A resistência à tração é um fator primordial na produção de concreto

permeável a ser moldado no local.

Tabela 2- Requisitos mínimos para resistência mecânica e espessura do concreto permeável.

Fonte: NBR 16416 (ABNT, 2015)

A tração na flexão é calculada a partir na NBR 12142, a partir da ruptura do

corpo de prova moldado de acordo com a NBR 5738 (ABNT, 2015). Utiliza-se a

seguinte equação:

𝐟ct, f =𝑭. 𝑰

𝒃 . 𝒅𝟐

Onde:

Fct,f= resistência à tração na flexão (MPa)

F=força de ruptura na prensa (N)

l=distância entre apoios (mm)

b=largura do corpo de prova (mm)

d=altura do corpo de prova (mm)

Page 14: AVALIAÇÃO EXPERIMENTAL DO CONCRETO POROSO QUANTO À

13

2.1.2 Suporte para o pavimento de concreto

Segundo Rodrigues e Pitta (1997) para se determinar o suporte da base do

pavimento, que serve como fundação, se faz uma relação entre o coeficiente de

recalque k e o Índice de Suporte Califórnia (CBR). Rodrigues e Pitta (1997) ainda citam

que pavimentos rígidos possuem bom comportamento sobre solos com um CBR

baixo. Porém, citam quatro vantagens, que fazem com que mesmo o pavimento de

concreto possuindo bom desempenho sobre o terreno com baixo CBR, faça-se o uso

de sub-bases. São elas:

✓ Impedir que os finos presentes no solo sofressem o processo de exsudação a

cada passagem de carga, quando o solo estiver com a presença de água;

✓ Uniformizar o suporte da fundação, pois sem a sub-base poderá ter vários

índices e assim alterar o comportamento;

✓ Aumentam a resistência do coeficiente de recalque da fundação, principalmente

quando ocorre o uso de cimento;

✓ Reduzem os efeitos a estrutura do pavimento dos solos que sofrem variação de

volume.

2.2 CONCRETO POROSO: CONCEITOS E ASPECTOS HISTÓRICOS

O concreto poroso que também é conhecido como concreto permeável é

composto por material ligante hidráulico, brita de graduação uniforme (agregado

graúdo), água e, pouco ou nenhuma quantidade de agregado miúdo. Ainda na

composição da mistura podem estar utilizando aditivos para atribuir uma melhor

resistência, durabilidade, desempenho e trabalhabilidade (COSTA et al., 2019).

Os pavimentos permeáveis são considerados sistemas de drenagem urbana,

pois permitem a passagem ou infiltração de 100% da água que chegam até ele,

evitando o escoamento superficial. A água infiltrada é dissipada através de sistemas

de drenagem (MARCHIONI; SILVA, 2013).

Page 15: AVALIAÇÃO EXPERIMENTAL DO CONCRETO POROSO QUANTO À

14

A Figura 1 apresenta uma seção típica de pavimento permeável, em que é

possível observar três camadas: revestimento de concreto permeável, base com

tubulação de drenagem e subleito.

Figura 1- Seção típica de pavimento permeável

Fonte: Marchioni e Silva (2013)

De acordo os autores supracitados o revestimento permeável deve permitir a

passagem de água rapidamente, impedindo a formação de poças. É preciso levar em

consideração a intensidade de chuva no local, características do solo e o tráfego.

O concreto poroso é definido pelo American Concrete Institute (ACI 522, 2010)

como uma estrutura que possui espaços vazios e que facilita a passagem de água

através da sua superfície. Sendo considerado um material sustentável, reduzindo o

escoamento superficial, propiciando um aumento da recarga do lençol freático e

reduzindo os impactos da urbanização.

O pavimento permeável deve possuir uma porosidade elevada e,

consequentemente uma boa drenagem. Logo, é preciso ter uma boa capacidade de

infiltração e, quando bem projetado e implantado de forma correta, influencia na

diminuição dos picos de vazões nas épocas de chuvas, em um determinado local

(COSTA et al., 2019).

Para o concreto ser considerado poroso torna-se necessário que o agregado a

ser utilizado na composição tenha uma granulometria adequada, com ausência de

finos, em que a abertura de poros permita a passagem de água pelo material

(MONTEIRO, 2010).

Page 16: AVALIAÇÃO EXPERIMENTAL DO CONCRETO POROSO QUANTO À

15

O concreto poroso tem um alto índice de vazios, ou seja, uma alta porosidade,

e uma resistência reduzida se comparado ao concreto convencional. Neste sentido,

seu uso é limitado a local com tráfego leve ou pouco intenso (ACI 522R-10 apud

RAMOS, 2018). Sendo indicado para locais com tráfego de cargas moderadas,

estacionamentos e calçadas.

A alta porosidade desse tipo de concreto é adquirida pela utilização de

agregados graúdos com a mesma granulometria, o que proporciona um volume de

vazios entre 15% e 30%. A quantidade de materiais e a relação água cimento

influência na resistência do concreto, considerando que o volume de vazios reduz a

resistência do material se comparado ao concreto convencional (BOTTEON, 2017).

Esse tipo de concreto é bastante utilizado para a pavimentação, em países

como Estados Unidos e Europa (Feguson, 2005 apud MONTEIRO, 2010). A primeira

utilização foi na Europa, em 1852. Na Alemanha esse concreto foi utilizado como

material estrutural, na década de 20 e, no Reino Unido, na década de 30, e difundido

na década de 40, através do sistema “Wimpey no-fines house”, produção de moradias

sociais após a Segunda Guerra Mundial. Nos Estados Unidos, os pavimentos

permeáveis foram estudados na década de 70, para evitar aquaplangem,

ofuscamento do farol, redução de ruídos e, a problemas de hidráulica, quantos aos

escoamentos superficiais (BOTTEON, 2017).

A princípio o concreto poroso foi utilizado para a fabricação de tubos drenantes

e, hoje é bastante empregado como revestimento em pavimentações nos Estados

Unidos, Europa e Japão (MONTEIRO, 2010).

No Brasil, as primeiras utilizações do concreto poroso foram em aeroportos,

utilizando revestimentos asfálticos, como no de Confins em Belo Horizonte-MG, no

ano de 1983 e, em 1987 no recapeamento da pista do aeroporto Santos Dumont, no

Rio de Janeiro (BOTTEON, 2017).

Segundo a autora supracitada, dos revestimentos asfálticos drenantes teve

início no Brasil em 1992, em trecho da Rodovia dos Bandeirantes-SP e em outras

rodovias como na via marginal da Rodovia Presidente Dutra (1997) e outras. O

incentivo ao uso dessa tecnologia no país veio também após a publicação da NBR

16416 – Pavimentos permeáveis de concreto – Requisitos e Procedimentos, com os

requisitos mínimos e especificações técnicas (BRASIL, 2015).

Page 17: AVALIAÇÃO EXPERIMENTAL DO CONCRETO POROSO QUANTO À

16

2.3 CARACTERÍSTICAS DO PAVIMENTO PERMEÁVEL

O pavimento permeável é caracterizado por possuir elevada porosidade e boa

permeabilidade, dependendo da sua composição. Devido a essa capacidade de

deixar a água infiltrar através de sua estrutura porosa, a utilização dessas estruturas,

quando corretamente projetadas e implantadas, podem influenciar significativamente

nas vazões de pico que ocorrem durante eventos de chuva em determinado local

(BETEZIN, 2003). Polastre e Santos (2006) mencionam que o concreto deve possuir

um alto índice de vazios interligados, garantindo assim a permeabilidade do concreto.

Utilizado com pouca ou nenhuma porção de areia na sua composição, assim é

permitido a percolação de grande quantidade de fluido.

Segundo Henderson (2009), ao se reduzir a quantidade de agregado miúdo

ou simplesmente eliminá-lo da mistura de concreto, o índice de vazios pode aumentar

para valores entre 15 a 25%. Dessa maneira, a água proveniente das precipitações

poderá percolar por meio dos poros da placa de concreto, diminuindo

consideravelmente a quantidade de escoamento superficial das águas pluviais.

Quando o concreto permeável é utilizado em pavimentação externa, a água da chuva

pode infiltrar diretamente no solo, diminuindo a vazão que segue para o sistema de

drenagem urbano. A sua adoção também contribui para a manutenção dos aquíferos

subterrâneos e à redução da velocidade e da quantidade do escoamento superficial

dessas águas.

Por permitir a infiltração natural das águas pluviais, ele acaba contribuindo para

um uso mais eficiente do solo, pois não são mais necessárias obras de drenagem,

como pontos de retenção, valas, tubulações e outros mais. O concreto permeável

possui outros pontos positivos, destacados por Polastre e Santos (2006), tais como:

Proporcionar um menor custo durante o seu ciclo de vida; b. Absorver menos

radiação solar e facilitar a sobrevivência da arborização em áreas pavimentadas, por

permitir a chegada de água e ar até as raízes; c. Colaborar para reduzir o problema

das enxurradas urbanas, que acabam levando uma enorme quantidade de resíduos

e poluentes aos corpos de água.

Page 18: AVALIAÇÃO EXPERIMENTAL DO CONCRETO POROSO QUANTO À

17

Com o correto dimensionamento e execução, o seu grau de permeabilidade é

suficiente para permitir a passagem de todo o fluxo precipitado na maioria dos eventos

de chuva, praticamente anulando o escoamento superficial. Segundo Dellate e

Clearly (2006), existem três tipos de concretos permeáveis que podem ser

caracterizados pelo nível de resistência e permeabilidade.

a) O primeiro, conhecido como concreto permeável hidráulico, é um material

com baixa resistência mecânica e elevada permeabilidade, utilizado para aplicações

não estruturais;

b) O concreto permeável normal possui resistência e permeabilidade

intermediárias, e pode ser utilizado para estacionamentos e calçadas, sendo

representado por uma mistura sem adição de agregado miúdo;

c) Por fim, existe o concreto permeável estrutural, que possui elevada

resistência mecânica e baixa permeabilidade, sendo caracterizado pela adição de

materiais de granulometria reduzida na mistura. Este tipo pode ser utilizado em

estacionamentos, ruas e avenidas que possuam tráfego de veículos pesados.

Para garantir a permeabilidade às águas pluviais, é muito importante que se

formem vazios interligados, essencial para a caracterização do concreto permeável.

Por essa razão, na maioria das misturas, não se utiliza agregado miúdo (areia), sendo

o concreto confeccionado apenas com água, cimento e agregado graúdo,

enquadrando-se assim com brita 0 ou brita 1 (BATEZINI, 2013).

Nesse sentido, o resultado se dá em um material conglomerado, formado por

partículas de agregado graúdo recobertas com uma camada razoavelmente espessa

de cimento e água. Em alguns casos usam-se pequenas quantidades de areia para

aumentar o volume da camada de recobrimento, sem aumentar o custo. Ao utilizar

essa estratégia geralmente se obtém um material com um índice de vazios entre 15

a 25%, e capacidade de percolação na ordem de 200 l/m2/min (ACI, 2006).

A mistura composta por mais agregados miúdos, resulta em uma porosidade

e permeabilidades inferiores, podendo comprometer as suas propriedades hidráulicas

(MONTES E HASELBACH, 2006). A capacidade de percolação das águas pluviais

diretamente no solo pelo material traz a possibilidade de, ao optar pela utilização do

concreto permeável, seja repensada a necessidade de grandes obras de drenagem e

Page 19: AVALIAÇÃO EXPERIMENTAL DO CONCRETO POROSO QUANTO À

18

de grande impacto. Em um ambiente urbano, isso representa um ganho ambiental e

econômico, elevando o valor da terra. Huffman (2005) considera que um concreto

permeável adequadamente dosado deve apresentar baixa densidade, ser permeável

e apresentar boa capacidade estrutural.

O concreto permeável tem a sua densidade influenciada, diretamente, pelas

propriedades e proporções dos materiais utilizados e na metodologia de compactação

usada na sua aplicação. Em geral, encontram-se densidades na ordem de 1600

kg/m3 a 2000 kg/m3 e índices de vazios de 15 a 25% (TENNIS, 2004). Quanto à

permeabilidade, cabe destacar as pesquisas do Instituto de Pesquisas Hidráulicas

(IPH) da UFRGS, reportadas por Araújo et. al. (1999), que avaliaram a eficiência dos

pavimentos permeáveis na redução do escoamento superficial.

Percebeu-se nos testes que as superfícies impermeáveis tipicamente usadas

na pavimentação urbana, com uso de asfalto, placas de concreto e pedras, acabaram

gerando um escoamento superficial 44% maior que outras superfícies, como o solo

compactado. Em áreas semipermeáveis, formadas por pavimentos permeáveis com

materiais intertravados como paralelepípedos, foi registrado um nível de escoamento

inferior ao das áreas impermeáveis, mas ainda 11 a 22% superior ao verificado em

solos compactados (HOLTZ, 2011).

Quando se usou o concreto permeável praticamente não se demonstrou

escoamento superficial. Isso demonstra que essa tecnologia pode de fato ajudar a

mitigar as enxurradas, revertendo, pelo menos em parte, o quadro problemático

associado com a alta impermeabilização do solo.

Segundo Holtz (2011), taxas de fluxo típicas de passagem de água através do

concreto permeável são da ordem de 120 l/m2/min (2 mm/s) a 320 l/m2/min (5,4

mm/s), valores superiores à capacidade de infiltração da maioria dos solos. O que

justifica a efetiva capacidade de infiltração vai ser dada através do solo. O autor

reforça que mesmo em solos pouco permeáveis, o uso do concreto permeável, sobre

uma camada de assentamento de brita, permite gerar uma capacidade de retenção e

reduzir a quantidade de água que escoa superficialmente, especialmente em eventos

de chuva intensa e de curta duração, que favorecem a ocorrência de inundações.

Fazendo o uso do concreto permeável, de forma a reduzir ou retardar a onda

de cheia, os impactos urbanos são menores, Tucci (2006), ressalva constantemente

Page 20: AVALIAÇÃO EXPERIMENTAL DO CONCRETO POROSO QUANTO À

19

que em um cenário urbano, há grande volume de água escoado por uma área

permeável inferior à natural.

Segundo o ACI (2006), as misturas de concreto permeável apresentam

resultados diretamente ligados ao índice de vazios e ao traço, apresentando

normalmente resistências de compressão na escala de 3,5 MPa a 28 MPa. Polastre

e Santos (2006) citam que em média se obtém resistências da ordem de 25 MPa, ou

seja, apesar do elevado índice de vazios, o contato entre os agregados graúdos que

compõem o esqueleto do concreto permeável garante uma resistência razoável. A

pasta ou argamassa de cimento, usada em pequenas quantidades, garante que os

agregados permaneçam unidos, evitando o desmoronamento e dificultando a perda

de material por abrasão.

2.4 PROPRIEDADES DO CONCRETO POROSO E CONVENCIONAL

Para ser considerado um concreto poroso é preciso ter uma granulometria

adequada, e os vazios entre grãos permita a passagem de água pelo material. As

propriedades vão depender da quantidade de materiais que compõem a mistura,

como quantidade de cimento, de água (a/c) e quantidade de vazios, que dependem

da graduação do agregado (MONTEIRO, 2010). A Tabela 3 apresenta as diferenças

entre o concreto convencional do poroso.

Tabela 3- Concreto convencional X Concreto poroso

TIPO Fck (MPa) Areia Brita Aditivos

Convencional 20 a 60 De 30 a 50 %

Bem graduado, arredondado.

Opcional

Poroso 3 a 30 Pouco ou nenhum

Graduação Aberta,

angulosos

Redutor de água, retardador de pega e incorporador de ar

Fonte: Adaptado de Monteiro (2010)

Percebe-se que a resistência característica do concreto a compressão (Fck) é

alta no concreto convencional se comparada com a do concreto poroso. Essa

diferença é devido ao percentual de vazios, que é alto no poroso, pois quando estes

Page 21: AVALIAÇÃO EXPERIMENTAL DO CONCRETO POROSO QUANTO À

20

não são preenchidos com um agregado com uma granulometria menor, como a areia,

tem uma menor resistência.

O concreto poroso no seu estado endurecido deve possuir um índice de vazios

de 0,15 a 0,25, e, fluxo de água em torno de 200 l/m²/min (Tennis et al., 2004 apud

CASTRO, 2015). No estado endurecido, os vazios variam de 15% a 35% e resistência

a compressão de 2,8 a 28 MPa (ACI 522R-10 apud RAMOS, 2018).

De acordo Monteiro (2010), a resistência maior no concreto convencional é por

ele ser estanque e no poroso, é permitida a passagem de água, por esse motivo a

resistência ser moderada. Segundo Ramos (2018), o tempo de concretagem do

concreto permeável deve ser reduzido, pois este perde água rapidamente. Logo, esse

tempo deve ser no máximo uma hora entre a mistura e a aplicação. O tempo pode ser

prolongado com a utilização de retardadores de pega, que aumenta o tempo para

uma hora e meia, que depende também da dosagem a ser utilizada.

Para a confecção do concreto torna-se necessário a mistura de aglomerante,

agregados (graúdos e miúdos), água e, dependendo da finalidade podem ser usados

alguns aditivos retardadores de pega, que melhorem a trabalhabilidade e o manuseio

do material, dentre outros.

O cimento é um aglomerante, pois tem função de unir materiais, seu

endurecimento se dá por meio de reações químicas quando em contato com a água.

O cimento Portland é um pó cinza, resultante da moagem do clínquer e sulfato de

cálcio. Quando endurece tem característica de rocha artificial, pois adquire resistência

e durabilidade. No processo de endurecimento precisa de água para se hidratar,

devido à liberação de calor (LEITE; GIRARDI; HASTENPFLUG, 2018). Dentre os

diferentes tipos de cimento, os de uso mais comuns nas construções são o CPII E-32,

o CPII F32 e o CPIII-40 (BASTOS, 2006).

Os agregados são classificados em miúdos e graúdos, que podem ser de

origem natural ou artificial. São classificados conforme o tamanho de seus grãos, e

seu uso no concreto pode ser com a utilização de grãos do mesmo tamanho ou de

tamanhos diferentes, dependendo da finalidade do produto final. Possuem formas e

mineralogias, que estão relacionados à dureza dos grãos, dando uma maior

durabilidade. Não podem ter substâncias que prejudiquem a hidratação,

Page 22: AVALIAÇÃO EXPERIMENTAL DO CONCRETO POROSO QUANTO À

21

endurecimento do cimento e, durabilidade do material (LEITE; GIRARDI;

HASTENPFLUG, 2018).

A granulometria é determinada por ensaios de caracterização de acordo a

norma NBR NM:248 (ABNT, 2003), onde o material será separado através do agitador

mecânico de peneiras. Classificam-se como agregado miúdo os grãos que passam

pela peneira ABNT # 4 (malha quadrada de 4,8 mm) e ficam retidos na peneira ABNT

# 200 (malha de 0,075 mm); e agregado graúdo são os grãos que passam pela peneira

ABNT com abertura nominal de 152 mm e ficam retidos na peneira ABNT # 4 (abertura

de 4,8 mm).

No concreto convencional os agregados utilizados para a confecção são o

miúdo e o graúdo, pois as partículas menores preenchem os vazios, dando uma maior

resistência ao material. Já no concreto poroso, o agregado miúdo é utilizado em

pequena ou nenhuma quantidade, para que o material tenha um maior número de

vazios e seja mais permeável.

Quase todas as águas naturais são apropriadas para amassamento. O teor de

água do concreto fresco é dado pelo fator água-cimento (a/c), isto é, pela relação em

peso água-cimento. A quantidade de água também é um fator que influencia na

resistência do concreto, pois em quantidades maiores tendem a deixar o material

poroso, mais trabalhável e menos resistente. A relação a/c varia geralmente entre 0,3

e 0,6. Quanto menor for o teor de água, maior é a resistência do concreto e menor é

a trabalhabilidade (ALMEIDA, 2002).

Logo, percebe-se que a relação água/cimento (a/c) tem grande influência na

resistência e consistência do concreto. No concreto permeável, a quantidade de água

deve dar um brilho à mistura e, ao retirar uma amostra de concreto e formar uma bola

esta não deve desmoronar e não fluir pelos vazios (RAMOS, 2018).

Figura 2- Consistência do concreto permeável

Page 23: AVALIAÇÃO EXPERIMENTAL DO CONCRETO POROSO QUANTO À

22

Fonte: Tennis (2004 apud RAMOS, 2018)

Como afirmado anteriormente, a quantidade de água influencia nas

propriedades da mistura. Quando em pequenas quantidades deixa a massa sem

consistência e com resistência baixa, já em quantidades maiores faz com que a pasta

sele os vazios, deixando o material com baixa resistência ao desgaste superficial

(MONTEIRO, 2010).

2.5 MATERIAIS CONSTITUTIVOS

A eliminação do agregado miúdo aumenta sobremaneira a superfície

específica da mistura, provocando o aumento do consumo de água de amassamento

e a substancial redução do tempo de pega do concreto.

Apesar de pouco usual, a NRMCA (2008) admite a possibilidade do uso do

agregado miúdo. Por outro lado, impõe-se o respeito à homogeneidade da faixa

granulométrica do agregado graúdo, como apresentado na tabela 4. O controle da

rugosidade do piso é obtido pela variação no diâmetro do agregado, que pode variar

de 5mm a 20mm.

Tabela 4 – Proporções de componentes do concreto poroso NRMCA (2008)

COMPONENTE PROPORÇÃO

Cimento 270 a 415 kg/m³

Agregado 1.190 a 1.480 kg/m³

Água / cimento 0,27 a 0,34

Page 24: AVALIAÇÃO EXPERIMENTAL DO CONCRETO POROSO QUANTO À

23

Agregado / cimento 4 a 4,5:1

Agregado miúdo / graúdo 0 a 1:1

O desempenho mecânico também sofre interferência da compactação, que,

segundo a CRMCA (2009), não pode ser excessiva para não fechar os vazios, nem

tão parca que não garanta aderência dos agregados e impeça um tráfego suave. Para

isso, deve-se lançar mão do uso de rolos compactadores com uma pressão de serviço

de 69KPa. Por outro lado, o substrato do colchão deve sofrer o mínimo necessário de

compactação para não prejudicar a permeabilidade.

Figura 3 - Amostra de uma placa de concreto permeável.

Fonte: UFRGS - Secretaria de Desenvolvimento Tecnológico (2018)

O dimensionamento da espessura e das demais características do subleito, do

base de brita graduada (colchão drenante) e do revestimento (concreto poroso), assim

como das demais camadas do pavimento, seguem os mesmos critérios adotados para

os pavimentos rígidos, constituídos de concreto de cimento Portland.

Senço (1997) relembra que os pavimentos rígidos têm esse nome por serem

pouco deformáveis e rompem por tração na flexão. Por essa razão a determinação

da espessura das camadas é conseguida a partir da avaliação da resistência à tração

do concreto, sendo feitas considerações em relação à fadiga, ao coeficiente de reação

do subleito e às cargas aplicadas.

Page 25: AVALIAÇÃO EXPERIMENTAL DO CONCRETO POROSO QUANTO À

24

O autor realça que a placa de concreto tem funções mais amplas que a

delgada camada de revestimento dos pavimentos flexíveis, pois, pelo “efeito viga”

resultante de sua rigidez, distribui as cargas do tráfego por áreas muito maiores, o

que lhe permite exercer, simultaneamente, as funções de revestimento e de base.

Por essa razão, enquanto o dimensionamento do pavimento flexível é

comandado pela resistência do subleito, no pavimento rígido o fator determinante é a

resistência do próprio pavimento (SENÇO, 1997).

Assim, o pavimento rígido é modelado como uma placa infinita de concreto

sujeita a cargas vertical e horizontal do tráfego, que são distribuídas pela placa de

concreto e transmitidas à camada de brita de forma homogênea.

No pavimento permeável, a camada de brita exerce a função estrutural de

dissipar as tensões recebidas pela placa de concreto e de amenizar o impacto sobre

o subleito por meio do espraiamento das pressões (figura 4) verificado

experimentalmente (CAPUTO, 1987).

Figura 4– Espraiamento das pressões no solo

Com esse procedimento, a carga que efetivamente atinge o subleito é bastante

diminuta, o que autoriza autores, como EPA (1999), a sugerir dispensar a

compactação dessa camada.

A NRMCA (2008) informa ser comum o uso de aditivos retardadores e

estabilizadores de absorção de água para equilibrar o processo, pois o aumento da

Page 26: AVALIAÇÃO EXPERIMENTAL DO CONCRETO POROSO QUANTO À

25

quantidade de água no concreto poroso tem ocasionado perda significativa de

durabilidade e resistência.

Em vista disso, a NRMCA (2008) sugere fator Água/Cimento situado na faixa

entre 0,27 e 0,34 com o uso de aditivos. A quantidade correta de água pode ser

percebida quando a massa ganha certo brilho de umidade, sem ficar liquefeita.

2.6 COMPOSIÇÃO DO TRAÇO DO CONCRETO POROSO

Para a composição do traço do concreto poroso torna-se necessário um maior

rigor comparado com o concreto simples. Como o concreto permeável tem uma

quantidade de vazios expressivos, deve possuir uma quantidade baixa ou nula de

agregados miúdos, para atingir o propósito da permeabilidade (COSTA et al., 2019).

A tabela 5 apresenta um exemplo de composição do traço do concreto poroso.

Tabela 5- Composição do traço de concreto permeável

Materiais Consumo/proporção

Cimento Portland (Kg/m3) 270 a 415

Agregado graúdo (Kg/m3) 1.190 a 1.700

Relação água/cimento (a/c) em massa 0,27 a 0,34

Relação cimento/agregado em massa 1:4 a 1:4,5

Relação agregado miúdo/agregado graúdo em massa 0 a 1:1

Fonte: Batezini (2013 apud CASTRO, 2015)

2.6.1 Agregados

Quanto aos agregados, o graúdo deve ter uma granulometria uniforme, sem

variação de tamanho, considerando que o diâmetro de 19 mm é bastante utilizado. O

miúdo deve ser retirado da mistura ou utilizado em pequena quantidade (CASTRO,

2015). Embora se utilize graduações que variam de 19 mm a 4,8 mm, 9,5 mm a 2,4

mm e 9,5 mm a 1,2 mm (BOTTEON, 2017).

A Figura 5 apresenta a diferença entre a graduação de grãos, sendo possível

observar que a graduação uniforme os grãos possuem aproximadamente o mesmo

tamanho.

Figura 5- Exemplo de graduação dos grãos

Page 27: AVALIAÇÃO EXPERIMENTAL DO CONCRETO POROSO QUANTO À

26

Fonte: Farias et al. (2010 apud BOTTEON, 2017)

2.6.2 Aglomerante e aditivos

Segundo Monteiro (2010) um elevado consumo de cimento poderá produzir um

concreto resistente, porém, reduz a capacidade de infiltração, logo, recomenda-se

utilizar uma quantidade de 270 kg/m³ e 415 kg/m³, com o propósito de seguir requisitos

de resistência e permeabilidade.

O cimento Portland é o principal ligante hidráulico utilizado em concretos

permeáveis, podendo estar empregando também ligantes asfálticos. É importante

utilizar ligantes que proporcione uma coesão da mistura de forma eficiente, para evitar

a desagregação do agregado, devido à ação do intemperismo (BOTTEON, 2017).

Na composição do concreto poroso a adição de aditivos é importante, pois este

possui uma pega rápida e, retardadores de pega são bastante utilizados. O ligante

hidráulico mais utilizado é o cimento Portland, porém outros materiais podem ser

aplicados.

2.6.3 Abatimento (Slump Test)

O concreto permeável no estado fresco possui baixa consistência, resultando

em uma baixa trabalhabilidade e, abatimento menor que 20 mm. Devido à baixa

consistência é incomum a utilização do ensaio de abatimento de tronco cone (Slump

Test), como método de controle. Os métodos mais empregados de controle são os

Page 28: AVALIAÇÃO EXPERIMENTAL DO CONCRETO POROSO QUANTO À

27

ensaios de massa unitária e visual. Os ensaios de corpo de prova e de ensaios

laboratoriais utilizados no concreto convencional não se aplicariam ao permeável,

devido as suas características diferenciadas (RAMOS, 2018).

A confecção do concreto permeável exige um maior cuidado. Após a

concretagem, devendo este ser coberto com uma lona plástica, para impedir a

evaporação de água da mistura, e protegido por no mínimo sete dias (CASTRO,

2015).

2.7 COEFICIENTE DE PERMEABILIDADE

A permeabilidade do concreto poroso depende dos materiais que foram

utilizados na composição e da forma de execução. Segundo Ramos (2018) se um

pavimento tiver 125 mm e 20% de espaços vazios, tem a capacidade de armazenar

cerca de 25 mm de água pluvial. Em um pavimento de 150 mm de brita a capacidade

de armazenamento aumenta, em 75mm.

Ainda, segundo o autor supracitado, o coeficiente de permeabilidade é a taxa

de infiltração de água na estrutura, com valores que variam de 0,21cm/s e 0,54cm/s,

no concreto poroso.

Marchioni e Silva (2013) mostra qual o procedimento de mensurar a taxa de

infiltração de água no concreto permeável, podendo ser verificado na figura 6.

Figura 6- Esquema para medição de coeficiente

Page 29: AVALIAÇÃO EXPERIMENTAL DO CONCRETO POROSO QUANTO À

28

Fonte: Marchioni e Silva (2013)

Os autores recomendam utilizar um cilindro com diâmetro de 30 cm e altura

mínima de 20 cm. É realizada uma pré-molhagem no pavimento com 3,6 L de água.

O fluxo deve ser mantido constante dentro do cilindro, com altura d’água de 10mm e

15 mm, tanto na pré-molhagem quanto no ensaio. O coeficiente é calculado pela

fórmula de Darcy (MARCHIONI; SILVA, 2013).

𝐈 =𝑲.𝑴

𝑫𝟐 .𝒕 Equação 1

I = Coeficiente de infiltração (mm/h)

M = massa de água infiltrada (kg)

D = diâmetro interno do cilindro (mm)

t= intervalo de tempo entre a adição da água e infiltração total

K= constante (4.583.666.000)

Schwetz et al. (2015) realizaram ensaios de permeabilidade do concreto em

corpo de prova cilíndrico que foi envolvido em uma membrana de látex e inserido no

permeâmetro. Na abertura do circuito a água entre e o ar sai. Quando o circuito fecha,

o nível entre a superfície da amostra e o dreno do permeâmetro é mantido. A coluna

de água foi de 290 mm, e registraram a descida da água até 70mm da amostra.

Repetiram o procedimento em três vezes e tiraram a média. O coeficiente foi calculado

pela Lei de Darcy.

Os autores Silva e Silva (2019) utilizaram equação simples para o cálculo da

taxa de infiltração, considerando a relação entre volume de água (em litros) pelo tempo

(segundos), com taxa de infiltração em litros/segundos.

Page 30: AVALIAÇÃO EXPERIMENTAL DO CONCRETO POROSO QUANTO À

29

Os autores Silva e Monteiro (2017) moldaram o concreto poroso em fôrmas

com dimensões de 75x75x8 cm. Utilizaram também anel de infiltração com diâmetro

de 29 cm e 10 cm de altura, com marcações para altura da lâmina de água em 10 mm

e 15 mm, estando de acordo com a NBR 16416 (2015) que indica diâmetro de 30 cm

com variação de ± 1cm e, altura mínima de 5 cm, para esse tipo de ensaio.

Os autores supracitados realizaram os ensaios em três pontos, devido à placa

de concreto ter uma área menor que 2500 m², conforme a norma NBR 16416 (2015).

2.8 DOSAGENS

Nesse tópico serão apresentados estudos sobre as dosagens para a confecção

do concreto poroso, as proporções utilizadas, o uso de aditivos para melhorar a

consistência e trabalhabilidade do material e os resultados obtidos.

Estudo realizado por Valmorbida et al. (2018) com o objetivo de verificar a

resistência e permeabilidade do concreto poroso, utilizaram o cimento CPII F 32 (100

g de cimento); 50 g de areia industrial, 394 g de Brita. Utilizaram o traço de 1:4,44:0,4

(cimento:agregado: relação a/c). Utilizaram molde para corpo de prova de 10x20 e

encontrou um fck de 6,10 MPa e, de 5x10 cm, com fck de 11,42, aos 7 dias de cura.

Os autores não realizaram teste de permeabilidade, pois os corpos de prova não

apresentaram vazios devido ao acréscimo de areia industrial, que necessitou da

utilização de maior quantidade de água, gerando maior quantidade de argamassa,

inibindo os espaços intersticiais.

Em pesquisa realizada por Silva (2019), foram analisados dois traços, em que

um traço possuía agregado com diâmetro de 9,5 a 6,5 mm e em outro de 6,3 a 2,4

mm. Não foi utilizado agregado miúdo. Utilizou o CP V-ARI. Realizaram análise

granulométrica com agitador de peneiras. A proporção do traço foi de 1:4,14:0,3,

consumo de aglomerante de 374 (Kg/m³), 1660 (Kg/m³). O controle realizado foi visual

e exame tátil, formação de bolas de concreto, para verificação da consistência.

Realizou ensaios de índice de vazios, massa específica aparente seca,

permeabilidade e resistência à compressão uniaxial. Perceberam que o traço com

variação uniforme apresentou melhor resultado nas características analisadas.

Castro, Nascimento e Teodoro da Silva (2018) utilizaram as proporções de

1:0,40:3:0,32 (cimento:agregado miúdo:agregado graúdo:relação a/c), traço de

Page 31: AVALIAÇÃO EXPERIMENTAL DO CONCRETO POROSO QUANTO À

30

referência sem aditivos e 1:0,40:4:0,34, com aditivos. Utilizaram 0,3L de aditivo, 0,5 L

e 0,7 L para 50 kg de cimento e, impermeabilizante Tecplus 1 Quartzolit. Verificaram

que o melhor traço foi de 1:0,40:3:0,32, sem adição de aditivo, que apresentou um

maior coeficiente de permeabilidade. O impermeabilizante diminui a quantidade de

vazios, interferindo na permeabilidade do concreto. Os autores utilizaram a brita 0 e

DMC 9,5 mm, extraída de rocha de micaxisto. Foi determinada a massa específica

aparente da areia de 2,498 g/cm³ e da brita 0, de 2,67 g/cm3.

Outro estudo utilizou três misturas de agregado graúdo, com variação de

diâmetro de 4,8 mm a 12,5 mm, empregou o cimento CP III 40 RS, por apresentar

elevada resistência a sulfatos, característica importante em concreto com alto índice

de vazios. O consumo de cimento e agregado utilizado foi de 374 kg/m3 e 1.660 kg/m3

e traço com proporção de 1:4,44:0,3. Foram utilizados agregados graníticos, com

diâmetro variando de 4,8 mm a 12,5 mm. Todo o agregado foi adicionado na betoneira

com mais 5% do peso do cimento. Foi misturado por 1 minuto. Adicionado o restante

dos materiais. Misturado por 3 minutos, seguido do repouso por 3 minutos e misturado

por mais 2 minutos. O coeficiente de permeabilidade foi de 0,13 a 0,14 cm/s. A

resistência a compressão variou de 9,2 a 11,5 MPa (BATEZINI, 2013).

Pode-se perceber que das quatro dosagens apresentadas, a de Valmorbida et

al. (2018) não foi realizado teste de permeabilidade, devido a utilização de areia

industrial que prejudicou a permeabilidade. Na dosagem de Castro, Nascimento e

Teodoro da Silva (2018), o melhor traço foi o sem aditivo, que apresentou um maior

coeficiente de permeabilidade.

Os autores Silva (2019) e Batezini (2013) utilizaram traço com proporções

parecidas, diferenciando no aglomerante, em que o primeiro utilizou o CP V-ARI e o

segundo autor o CP III 40 RS, por apresentar elevada resistência a sulfatos,

característica de concreto com alto índice de vazios.

A água a ser utilizada no amassamento pode conter alguns íons agressivos,

como o dióxido de carbono, sulfatos e cloretos, considerando que estas substâncias

não prejudicam a durabilidade do concreto, quando este tem baixa porosidade e

permeabilidade (LEITE; GIRARDI; HASTENPFLUG, 2018). No concreto poroso existe

um alto índice de vazios, logo, é interessante a utilização de cimento resistente a

sulfatos, para proporcionar uma maior durabilidade ao material.

Page 32: AVALIAÇÃO EXPERIMENTAL DO CONCRETO POROSO QUANTO À

31

Batezini (2013) utilizou três misturas de agregados graúdos, obtendo uma

permeabilidade de 0,13 a 0,14 cm/s, divergindo de Ramos (2018), que recomenda

uma permeabilidade de 0,21cm/s e 0,54cm/s, para o concreto poroso. Logo, percebe-

se que a menor permeabilidade do concreto poroso de Batezini, pode ser devido à

mistura de agregados de diferentes tamanhos, não utilizando agregado de

granulometria uniforme.

Page 33: AVALIAÇÃO EXPERIMENTAL DO CONCRETO POROSO QUANTO À

32

3 METODOLOGIA

Para o desenvolvimento deste trabalho será realizada pesquisa bibliográfica e

experimental. A parte bibliográfica será desenvolvida a partir de livros, artigos

científicos, trabalhos monográficos e, legislação específica. A experimental será

realizada através de ensaios no laboratório de materiais do CEULP/ULBRA, em

Palmas-TO.

Esse trabalho será desenvolvido através de uma pesquisa descritiva com

abordagem quantitativa. A Descritiva “exige do investigador uma série de informações

sobre o que deseja pesquisar” (GERHARDT; SILVEIRA, 2009, p. 35). A quantitativa

caracteriza-se pelo emprego da quantificação, com coleta de informações e

tratamento delas (Richardson, 1999, apud OLIVEIRA, 2011).

3.1 MATERIAIS

Para a realização dos ensaios de laboratório serão utilizados os seguintes

materiais:

✓ Água de amassamento: Será utilizada água potável proveniente da rede pública de

abastecimento do município de Palmas-TO.

✓ Aglomerante hidráulico: Será utilizado o cimento do tipo Portland CPII-F-40 RS, por

este ser facilmente encontrado no município.

✓ Agregado graúdo: Será utilizada a Brita 0 (ϕ 9,5 mm) e, Brita 1 (ϕ 19 mm).

Serão utilizadas 12 formas para corpo de prova cilíndrico 10x20cm, conforme

NBR 5738 (ABNT, 2015), para a verificação da resistência à compressão. Serão

confeccionadas 2 formas com dimensões de 750 mm de largura, 750 mm de

comprimento e 80 mm de espessura para a confecção da placa de concreto para a

verificação da permeabilidade, no estado endurecido, conforme NBR 9781 (ABNT,

2013). Será também utilizado anel cilíndrico de 300 mm de diâmetro, e altura de 100

mm, com marcação de 15 mm de altura, conforme a NBR 16416 (ABNT, 2015).

Para a verificação da Resistência à tração na flexão serão moldados quatro

corpos de prova (prova e contraprova), em formatos prismáticos, com medidas de

15x15x50 cm, sendo dois para cada traço, para a idade de 28 dias.

Page 34: AVALIAÇÃO EXPERIMENTAL DO CONCRETO POROSO QUANTO À

33

Serão utilizados os equipamentos essenciais presentes no laboratório de

materiais, inclusive a Balança de precisão.

Não será utilizado equipamento para realizar a vibração do concreto, pois o

adensamento será realizado de forma manual.

Será também utilizado um Anel de infiltração no ensaio de permeabilidade e

um cronômetro com resolução de 0,1 segundos.

Será utilizada betoneira com capacidade do tambor de 400 litros e capacidade

de mistura de 280 litros, com dimensões (C x L x A) de 1650 x 976 x 1470 mm,

produção horária de 3m3, rotação do tambor de 26 RPM, com 12 ciclos/hora.

3.2 PARÂMETROS PARA DOSAGEM E TRAÇO DE REFERÊNCIA

Para a composição do traço do concreto permeável será considerado como

parâmetros para a dosagem dos materiais utilizados, o descrito na Tabela 2, conforme

Batezini (2013 apud CASTRO, 2015). A dosagem será realizada utilizando em uma

composição de materiais a Brita 0 e, na outra composição a Brita 1.

O processo de mistura utilizado na presente pesquisa será o mesmo

utilizado por Batezini (2013), criado por Schaefer et al. (2006). Este método,

segundo os autores, gera um ganho de resistência mecânica e condutividade

hidráulica para o concreto produzido. O procedimento é da seguinte forma:

- Adicionar todo o agregado na betoneira com mais 5% do peso total do

cimento;

- Misturar por 1 minuto;

- Adicionar o restante dos materiais;

- Misturar por 3 minutos;

- Deixar a mistura em repouso por 3 minutos;

- Misturar por mais 2 minutos.

A escolha do traço foi feita através de estudos de outros autores. Logo, a

escolha da proporção do traço referência foi baseada nos estudos do autor Batezini

Page 35: AVALIAÇÃO EXPERIMENTAL DO CONCRETO POROSO QUANTO À

34

(2013). Neste sentido, a proporção de referência será de 1:4,4:0,3 (cimento:agregado

graúdo:água) obedecendo também os parâmetros descritos na Tabela 3 e 4.

Não será utilizado agregado miúdo, pois conforme afirmado por Valmorbida et

al. (2018), a areia prejudica a permeabilidade do material, devido à diminuição dos

espaços vazios.

Não será utilizado aditivo plastificante, pois segundo a autora Silva (2019), este

possui característica impermeabilizante, diminuindo os espaços vazios e

influenciando na redução da permeabilidade do concreto. Logo, qualquer alteração no

traço será no a/c, dentro da variação 0,27 a 0,34, em busca da melhor consistência e

trabalhabilidade.

O cimento a ser utilizado é o CPII-F-40-RS, pois o fíler proporciona um maior

grau de finura ao cimento dando uma maior resistência ao concreto. Sendo um tipo

de aglomerante bastante utilizado na fabricação de concreto para pavimentos. Esse

aglomerante também apresenta uma elevada resistência a sulfatos, característica

importante em concreto com alto índice de vazios, conforme Batezini (2013).

Para confeccionar o concreto poroso com uma granulometria uniforme, a Brita

0 e a Brita 1 não serão misturadas. Então serão confeccionado um concreto com a

Brita 0 e outro com a Brita 1.

Proporção de referência, conforme Batezini (2013):

1 : 4,4 : 0,3

Concreto poroso com Brita 0

Cimento = 374 kg/m3

Brita 0 = 1.646 kg/m3

Água = 112,2 kg/m3 ou 112,2 L/m3

Concreto poroso com Brita 1

Cimento = 374 kg/m3

Brita 1 = 1.646 kg/m3

Água = 112,2 kg/m3 ou 112,2 L/m3

3.3 ENSAIOS E MODO DE FABRICAÇÃO

Page 36: AVALIAÇÃO EXPERIMENTAL DO CONCRETO POROSO QUANTO À

35

O agregado graúdo coletado, primeiramente será seco ao ar e depois separado

pelo peneiramento através do ensaio de granulometria para determinar a faixa dos

diâmetros dos agregados, de 9,5 (malha 3/8’’) e 19 mm (malha 3/4'’), de acordo a NBR

NM:248 (ABNT, 2003). Serão pesados os materiais retidos por tamanho. Esse ensaio

será necessário para excluir da amostra grãos com dimensões menores do que os

diâmetros da Brita 0 e Brita 1.

Será utilizado o processo de mistura de materiais conforme o indicado por

Batezini (2013), adicionar na betoneira todo o agregado com mais 5% do peso do

cimento. Será seguida a seguinte sequência: misturar por 1 minuto, adicionar demais

materiais; misturar por mais 3 minutos; repouso por mais 3 minutos e misturar por 2

minutos.

O controle da consistência do concreto será realizado de forma visual e tátil.

Será feito bolas do concreto e este não deverá se desfazer, conforme Silva (2019).

Serão realizados também ensaios de slump test, conforme os procedimentos

determinados na Norma Mercosul (NM) 67 (BRASIL, 1998), embora não seja

necessário devido ao baixo abatimento no concreto poroso, conforme descrito na

literatura pesquisada.

Para cada traço dosado, considerando Brita 0 e Brita 1, do concreto permeável,

serão moldados seis corpos de provas (prova e contraprova), totalizando em 12

corpos de provas. As moldagens nos corpos cilíndricos serão executadas em 2

camadas, com 12 golpes cada, conforme NBR 5738 (ABNT, 2015). A moldagem das

placas será em 3 camadas com 15 golpes cada. Será utilizado um desmoldante em

todas as fôrmas para facilitar a retirada dos corpos de prova. Após 24 horas da

moldagem serão submetidos à cura em tanque com água, conforme a ABNT NBR

5738 (BRASIL, 2015).

Será verificada a resistência à compressão axial dos corpos de provas

cilíndricos, aos 7, 14 e 28 dias de cura, com o auxílio de prensa hidráulica. A

resistência à compressão será obtida, dividindo-se a carga da ruptura pela área da

seção transversal do corpo-de-prova a ser utilizado no ensaio, conforme ABNT NBR

5739 (BRASIL, 2007).

Page 37: AVALIAÇÃO EXPERIMENTAL DO CONCRETO POROSO QUANTO À

36

Para a realização do ensaio de permeabilidade, será utilizado um volume de

água conhecido e será aplicado com a utilização de um anel de infiltração de 30 cm

de diâmetro (tubo de PVC), colocado sobre uma placa de concreto permeável, que

limitará a área molhada. A água a ser infiltrada será monitorada através da utilização

de um cronômetro que contabilizará o tempo de infiltração da água (SILVA; SILVA,

2019).

Para não prejudicar a infiltração de água no concreto será retirado qualquer

sedimento sobre o material. Será realizada também uma pré-molhagem antes de

iniciar o ensaio. O anel será vedado com massa de calafetar. Será mantido um nível

de água de 15 mm. Será marcado o intervalo de tempo no cronômetro quando a água

atingir a superfície do concreto e parado quando a água estiver infiltrada totalmente.

Será realizado 3 medições em 3 pontos de cada placa, por estas apresentarem área

menor que 2500 m², conforme especificações da NBR 16416 (2015). Será calculada

a média das taxas de água infiltrada em cada placa de concreto poroso.

A taxa de infiltração será calculada através da equação 1.

𝐈 =𝑳

𝑻 Equação 2

Onde:

I = Taxa de infiltração (𝑙/𝑠)

L= Volume de água (litros)

T = Tempo (segundos)

Os resultados dos ensaios serão apresentados em tabelas, gráficos e imagens

dos procedimentos, realizando comparações com estudos de outros autores sobre

essa temática.

3.4 VARIÁVEIS

As variáveis a serem consideradas serão:

✓ Fck de 25 MPa

✓ Fct de 4 MPa

✓ Abatimento de 20 mm

✓ Taxa de água de infiltração no concreto de 0,30 cm/s

Page 38: AVALIAÇÃO EXPERIMENTAL DO CONCRETO POROSO QUANTO À

37

4 CRONOGRAMA

O presente trabalho segue um cronograma pré-definido para o andamento da

pesquisa, como mostra na Tabela 6.

Tabela 6-Cronograma do projeto de pesquisa.

ETAPAS 2020/1 2020/2

Jan Fev Mar Abr Mai Jun Jul Ago Set Out Nov Dez

Fase de decisão do tema X

Levantamento de referencial

X X

Definição da Metodologia X

Escrita e organização do trabalho

X X

Defesa do projeto de pesquisa

X

Ensaios laboratoriais X X X

Coleta de matérias e secagem

X

Análise granulométrica X

Pesagem, confecção do concreto, slump test

X

Moldagem e cura X

Verificação da taxa de infiltração

X

Verificação da resistência mecânica a compressão

X X

Levantamento de dados bibliográficos

X X

Análise das informações X X X

Considerações finais e conclusão.

X

Defesa da Monografia X

Page 39: AVALIAÇÃO EXPERIMENTAL DO CONCRETO POROSO QUANTO À

38

5 ORÇAMENTO

Os valores previstos no orçamento serão custeados pelo pesquisador e serão

considerados nas despesas com os materiais a serem utilizados nos traços de

concreto permeável.

Tabela 7- Orçamento do projeto de pesquisa.

Materiais Valor

Total (R$)

Cimento 25,00

Brita 0 50,00

Brita 1 50,00

TOTAL 125,00

Page 40: AVALIAÇÃO EXPERIMENTAL DO CONCRETO POROSO QUANTO À

39

REFERÊNCIAS

ALMEIDA, Luiz Carlos de. Concreto. Notas de aula. Universidade Estadual de Campinas. 2002. Disponível em: http://www.fec.unicamp.br/~almeida/au405/Concreto.pdf. Acesso em 20 de mai de 2020. ABNT. Associação Brasileira de Normas Técnicas. NBR 5738: Concreto – Procedimento para moldagem e cura de corpos de prova. 2015. 13 p. ______. NBR NM 248 – Agregados – Determinação da composição granulométrica, Rio de Janeiro, 2003. ______. NBR 5739: Concreto – Ensaio de compressão de corpos-de-prova cilíndricos. 2007. 13 p. ______. NBR NM 67: Concreto – Determinação pela consistência pelo abatimento do tronco de cone. 1998. 8 p. ______. NBR 16416: Pavimentos permeáveis de concreto. 2015. ______. NBR 9781: Peças de concreto para pavimentação – Especificação e métodos de ensaio. Rio de Janeiro, 2013 ______. NBR 12142: Concreto – Determinação da resistência à tração na flexão de corpos de prova prismáticos. Rio de Janeiro, 2015. ______. NBR 5738: Concreto – procedimento para moldagem e cura de corpos-deprova. Rio de Janeiro, 2015. ARAÚJO JÚNIOR, Josemildo Verçosa de et al.. Pavimento permeável: Funcionalidade e aplicabilidade em rede de drenagem. Revista Craibeiras de Agroecologia, Rio Largo, v. 3, n. 1, p. e6663, 2018. Disponível em: http://200.17.114.107/index.php/era/article/view/6663/4629. Acesso em: 06 mai 2020. ACI COMMITTEE 522. 522R-10 Report on Pervious. 2010, 38p. Disponível em: https://www.icpi.org/sites/default/files/resources/technical-papers/1809_0.pdf. Acesso em: 05 mai 2020. BOTTEON, Letícia Machado. Desenvolvimento e caracterização de concreto permeável para utilização em blocos intertravados para estacionamentos. 2017. 95 p. Monografia (Engenharia Civil). Universidade Federal Fluminense. Niterói, 2017. BATEZINI, Rafael. Estudo preliminar de concretos permeáveis como revestimentos de pavimentos para áreas de veículos leves. 2013. 133p. Dissertação (Engenharia). Escola Politécnica da Universidade de São Paulo. São Paulo, 2013.

Page 41: AVALIAÇÃO EXPERIMENTAL DO CONCRETO POROSO QUANTO À

40

BASTOS, Paulo Sérgio dos Santos. Fundamentos do concreto armado. Notas de aula. Universidade Estadual Paulista. Bauru-SP. 2006. BALBO, José Tadeu. Pavimentos de concreto. São Paulo: Oficina de Textos, 2009. COSTA, Marília Cristina Barata da et al.. Estudo da viabilidade técnica do uso de concreto permeável em pavimentos urbanos de baixo tráfego utilizando agregado graúdo regional. RCT- Revista de Ciência e Tecnologia, v. 5, n. 8, p. 1-17, 2019. CASTRO, Luiz Fernando Altermann de. Estudo de traço de concreto permeável de cimento portland. 2015. 57p. Monografia (Engenharia Civil). Universidade de Santa Cruz do Sul. Santa Cruz do Sul, 2015. CASTRO, Breno Brandão da Costa; NASCIMENTO, Matheus Moraes do; TEODORO DA SILVA, Agnaldo Antônio Moreira. Estudo do concreto permeável: resistência e permeabilidade. RECIEC-Revista Científica de Engenharia Civil, v 01, n. 01, 2018. Disponível em: http://anais.unievangelica.edu.br/index.php/reciec/article/view/3338/1629. Acesso em: 16 mai 2020. CAPUTO, H. P. Mecânica dos Solos e suas Aplicações. v2, 6ªEd. LTC. Rio de Janeiro, RJ, 1987. 498p. DEPARTAMENTO DE ESTRADAS DE RODAGEM. RT – 03.25: Avaliação da macro textura de pavimentos viários através do ensaio de mancha de areia. Belo Horizonte, 2005. DEPARTAMENTO NACIONAL DE INFRAESTRUTURA DE TRANSPORTES. Manual de estudos de tráfego. Rio de Janeiro: 2006 GERHARDT, Tatiana Engel; SILVEIRA, Denise Tolfo. Métodos de pesquisa. Universidade Aberta do Brasil – UAB/UFRGS. Curso de Graduação Tecnológica – Planejamento e Gestão para o Desenvolvimento Rural da SEAD/UFRGS. Porto Alegre: Editora da UFRGS, 2009. 120 p. G1 TOCANTINS. Chuva rápida causa diversos pontos de alagamento em Palmas. 2020. Disponível em: https://g1.globo.com/to/tocantins/noticia/2020/01/11/chuva-rapida-causa-diversos-pontos-de-alagamento-em-palmas.ghtml. Acesso em: 16 mai 2020. IBGE. Instituto Brasileiro de Geografia e Estatística. Estudo inédito mostra moradores sujeitos a enchentes e deslizamentos. 2019. Disponível em: https://agenciadenoticias.ibge.gov.br/agencia-noticias/2012-agencia-de-noticias/noticias/21566-estudo-inedito-mostra-moradores-sujeitos-a-enchentes-e-deslizamentos. Acesso em: 16 mai 2020. IBGE. Instituto Brasileiro de Geografia e Estatística. Desastres naturais: 59,4% dos municípios não têm plano de gestão de riscos. 2019. Disponível em: https://censo2020.ibge.gov.br/2012-agencia-de-noticias/noticias/21633-desastres-

Page 42: AVALIAÇÃO EXPERIMENTAL DO CONCRETO POROSO QUANTO À

41

naturais-59-4-dos-municipios-nao-tem-plano-de-gestao-de-riscos.html. Acesso em: 16 mai 2020. KOYANAGAWA, M.; YONEYA, H.; KOKUBU, K. Evaluation of reliability of concrete pavement in consideration of fatigue properties. In: Proceedings of the 3rd International Workshop on the Design and Evaluation of Concrete Pavements, CROW - PIARC - CEMBUREAU, pp. 207-216, Krumbach. 1994 LEITE, Helena Rodrigues; GIRARDI, Ricardo; HASTENPFLUG, Daniel. Durabilidade do Concreto: Análise dos Requisitos dos Materiais Constituintes. Revista de Engenharias da Faculdade Salesiana, n. 8, pp. 14-25, 2018. MARCHIONI, Mariana L.; SILVA, Cláudio Oliveira. Conceitos e Requisitos para Pavimentos de Concreto Permeável. 2013. Disponível em: http://solucoesparacidades.com.br/wp-content/uploads/2013/07/PR3_Conceitos_Requisitos_Pav_Concreto_Permeavel.pdf. Acesso em: 05 mai 2020. MONTEIRO, Anna Carolina Neves. Concreto poroso: dosagem e desempenho. 2010. 36 p. Monografia (Engenharia Civil). Universidade Federal de Goiás. Goiânia, 2010. MACIEL, Priscila de Souza. Análise da infraestrutura de pavimento rígido com reforço diferenciado de fibras de aço. 2017. 121 p. Dissertação (Mestrado). Universidade Federal de Ouro Preto. Ouro Preto, 2017. NRMCA - National Ready Mix Concrete Association (2008). Pervious Concrete Pavement: When it rains. Disponível em: http://www.perviouspavement.org/index.html . Acesso em 26 mai 2020. OLIVEIRA, Maxwell Ferreira de. Metodologia científica: um manual para a realização de pesquisas em Administração. Catalão: UFG, 2011. 72 p. ONU. Organização das Nações Unidas. OCHA: Brasil está entre países com maior número de pessoas expostas a inundações. 2020. Disponível: https://nacoesunidas.org/ocha-brasil-esta-entre-paises-com-maior-numero-de-pessoas-expostas-a-inundacoes/. Acesso em: 16 mai 2020. OLIVEIRA, Patrícia Lizi de. Projeto estrutural de pavimentos rodoviários e de pisos industriais de concreto. 2000. São Carlos, 216 p. Dissertação (Mestrado) – Escola de Engenharia de São Carlos, Universidade de São Paulo, 2000. PITTA, Márcio Rocha. Dimensionamento dos pavimentos rodoviários de concreto. 10 ed. São Paulo, ABCP, 1997. 44 p. RAMOS, Gustavo Moreira. Análise das propriedades do concreto permeável com adição de agregado miúdo e resíduo (cinza de madeira). Monografia (Engenharia Civil). 90 p. 2018. Universidade Federal de Santa Catarina. Joinville, 2018.

Page 43: AVALIAÇÃO EXPERIMENTAL DO CONCRETO POROSO QUANTO À

42

RODRIGUES, Públio P. F.; PITTA, Márcio R.. Dimensionamento de pavimentos de concreto estruturalmente armados. [S.l.:s.n.], 1997. SILVA, Fabrício Garçoni Ferreira; SILVA, Lucas Corrêa. Utilização do concreto permeável na pavimentação de estacionamentos. 2019. 15p. Faculdade Aldete Maria Alves, Iturama- MG, 2019. SILVA, Geovana Carla Gatto da. Estudo experimental do concreto permeável para pavimentação. 2019. Trabalho de Conclusão de Curso (Bacharelado em Engenharia Civil) – Faculdade de Engenharia, Universidade Federal da Grande Dourados, Dourados, MS, 2019. SILVA, Rodrigo Garozi da et al.. Concreto permeável: principais características e aplicação em pavimentação. ANAP Brasil, v. 12, n. 26, 2019. SILVA, Douglas Eduardo Gomes Lima da; MONTEIRO, Leandro Omena Gama. Análise de dosagem para concreto poroso usado para pavimento permeável. Graduação em Engenharia Civil. Centro Universitário CESMAC, Maceió – AL, 2017. SCHWETZ, P.F. et al.. Concreto permeável: otimização do traço para pavimentação de fluxo leve. CONPAT 2015, Lisboa, 2015. SENÇO, W. Manual de Técnicas de Pavimentação. Vol 1. 1ª Ed. São Paulo, SP. Ed Pini, 746p, 1997. SILVA, José Eudes Marinho da; CARNEIRO, Luiz Antonio Vieira. Pavimentos de concreto: histórico, tipos e modelos de fadiga. 2014. Disponível em: http://rmct.ime.eb.br/arquivos/RMCT_3_tri_2014/RMCT_012_E2C_11.pdf. Acesso em: 01 jun 2020. VALMORBIDA, Alessandro Emilio et al.. Estudo experimental de dosagem de traço de concreto permeável. IMED, p. 1-9, 2018. Disponível em: https://soac.imed.edu.br/index.php/mic/xiimic/paper/viewFile/926/275. Acesso em: 16 mai 2020.