“avaliaÇÃo de teste de flexÃo para cerÂmicas...

61
FACULDADE DE ODONTOLOGIA DE PIRACICABA JOÃO PAULO LYRA E SILVA “AVALIAÇÃO DE TESTE DE FLEXÃO PARA CERÂMICAS ODONTOLÓGICAS” ASSESSMENT OF TEST PARAMETERS OF DENTAL CERAMICSPIRACICABA 2015

Upload: lekhanh

Post on 02-Dec-2018

233 views

Category:

Documents


0 download

TRANSCRIPT

FACULDADE DE ODONTOLOGIA DE PIRACICABA

JOÃO PAULO LYRA E SILVA

“AVALIAÇÃO DE TESTE DE FLEXÃO PARA CERÂMICAS ODONTOLÓGICAS”

“ASSESSMENT OF TEST PARAMETERS OF DENTAL CERAMICS”

PIRACICABA

2015

ii

iii

UNIVERSIDADE ESTADUAL DE CAMPINAS

FACULDADE DE ODONTOLOGIA DE PIRACICABA

JOÃO PAULO LYRA E SILVA

“AVALIAÇÃO DE TESTE DE FLEXÃO PARA CERÂMICA ODONTOLÓGICAS”

“ASSESSMENT OF TEST PARAMETERS OF DENTAL CERAMICS”

Tese de Doutorado apresentada ao Programa de Pós-Graduação em Materiais Dentários da Faculdade de Odontologia de Piracicaba da Universidade Estadual de Campinas para obtenção do título de Doutor em Materiais Dentários.

Doctorate thesis presented to the Dental Materials Post graduation Program of Piracicaba Dental School of the State University of Campinas to obtain the Ph.D.

grade in Dental Materials.

Orientador: Prof. Dr. Lourenço Correr Sobrinho

ESTE EXEMPLAR CORRESPONDE À VERSÃO

FINAL DA TESE PELO ALUNO JOÃO PAULO

LYRA E SILVA, E ORIENTADA PELO PROF. DR.

LOURENÇO CORRER SOBRINHO.

__________________________

Assinatura do Orientador

PIRACICABA

2015

iv

FICHA CATALOGRÁFICA

Agência de fomento: Não se aplicaNº processo: Não se aplica

Ficha catalográficaUniversidade Estadual de Campinas

Biblioteca da Faculdade de Odontologia de PiracicabaMarilene Girello - CRB 8/6159

Lyra e Silva, João Paulo, 1981- L995a LyrAvaliação de teste de flexão para cerâmicas odontológicas / João Paulo Lyra e

Silva. – Piracicaba, SP : [s.n.], 2015.

LyrOrientador: Lourenço Correr Sobrinho. LyrTese (doutorado) – Universidade Estadual de Campinas, Faculdade de

Odontologia de Piracicaba.

Lyr1. Cerâmicas odontológicas. 2. Análise de elementos finitos. I. Correr Sobrinho,

Lourenço,1960-. II. Universidade Estadual de Campinas. Faculdade deOdontologia de Piracicaba. III. Título.

Informações para Biblioteca Digital

Título em outro idioma: Assessment of test parameters of dental ceramicsPalavras-chave em inglês:Dental ceramicsFinite element analysisÁrea de concentração: Materiais DentáriosTitulação: Doutor em Materiais DentáriosBanca examinadora:Lourenço Correr Sobrinho [Orientador]Veridiana Resende Novais SimamotoSimonides ConsaniRafael Pino VittiGilberto Antônio BorgesData de defesa: 06-07-2015Programa de Pós-Graduação: Materiais Dentários

Powered by TCPDF (www.tcpdf.org)

v

vi

vii

RESUMO

Os objetivos neste estudo foram (1) investigar a influência de diferentes métodos

de ensaio de resistência à flexão de cerâmicas odontológicas de acordo com a

norma ISO 6872; (2) avaliar o efeito do proporcionamento do teste de resistência à

flexão biaxial para cerâmicas odontológicas por Análise de Elementos Finitos.

Estudo 1 - dez discos em cera (Ø 12 mm x espessura de 1.2 mm) e barras em

resina acrílica (25 mm de comprimento x 5 mm de espessura e 2 mm de altura)

foram usinadas usando o sistema CAD/CAM. Em seguida, os padrões em cera e

resina usinados foram incluídos em revestimento para técnica de cera perdida e

pastilhas de cerâmica à base de disilicato de lítio foram injetadas. Para a análise

de elementos finitos, três modelos tridimensionais foram gerados usando

elementos hexaédricos e a análise foi realizada de acordo com os testes. Estudo 2

- três modelos tridimensionais de elementos finitos para teste de resistência à

flexão biaxial foram gerados usando elementos hexaédricos simulando as

condições da ISO 6872 e em proporções dimensionais de 75% e 50%. Todas as

pontas aplicadoras foram consideradas superfícies de contato e uma carga de 120

N foi aplicada. Os materiais foram considerados como homogêneos, lineares,

elásticos e isotrópicos. Os discos cerâmicos assumiram as propriedades

mecânicas do dissilicato de lítio (96 GPa e 0,23 coeficiente de Poisson). Fricção

entre os sistemas de carga e os cilindros foi desconsiderada. Restrições foram

aplicadas nas extremidades do disco cerâmico, para evitar o deslocamento do

espécime. Análise estática estrutural de contato foi considerada linear (MSC Marc

2010, MSC Software Corporation) e os resultados foram analisados usando von

viii

Mises (VM) e Máximo Principal (MPS). No estudo 1, diferenças significantes

foram observadas para os valores de resistência à flexão obtidos com diferentes

métodos, com maiores valores para resistência à flexão biaxial que para a flexão

de três pontos. Maiores concentrações de tensão foram encontradas nas amostras

nas áreas correspondentes ao contato da ponta aplicadora e suportes para ambos

os métodos. Os resultados no estudo 2 mostram que maior concentração de

tensão foi observado no ponto de carregamento e nas áreas de apoio, para todos

os modelos do teste. O mesmo padrão de distribuição de tensão foi produzido

para as diferentes proporções de piston on three ball. Já no estudo 1, pode-se

concluir que: (I) para os valores de resistência à flexão, diferenças estatísticas

foram verificadas para o mesmo material, quando foram utilizados diferentes

métodos de ensaio (resistência à flexão uniaxial e biaxial). Para o estudo 2, de

acordo com as análises de Von Mises e Resistência Máxima Principal, reduzindo a

proporção da ISO 6872 houve aumento de concentração de tensão, no entanto, a

distribuição de tensões nos discos de teste foi influenciada pelos diferentes design

do teste.

Palavras-chave: Análise por elementos finitos; Cerâmicas odontológicas;

Resistência Flexural, Flexão Biaxial

ix

ABSTRACT

The aims of these studies were: (1) to assess the influence of different test

methods for assessing the flexural strength of dental ceramics according to the

ISO 6872 standard; (2) to evaluate effect of proportioning biaxial flexural strength

test on ceramic dental by Finite Element Analysis. Study 1 - ten waxed discs (12

mm in diameter and 1.2 mm thickness) and acrylic resin beams (25 mm length x 5

mm thickness and 2 mm height) were milled using CAD/CAM system. Then, the

patterns were invested and lithium disilicate-based ceramic ingots were pressed.

For FEA, three-dimensional (3D) models were generated and meshed using eight-

node hexahedral elements and analysis was performed according to the tests.

Study 2 - three models of 3D finite element of the biaxial flexure tests were

generated and meshed using eight-node hexahedral elements simulating

conditions of ISO 6872 parameters and its proportion of 75% and 50%. All loading

systems were considered contacting surfaces and a 10 N load was applied. The

materials were assumed as homogeneous, linear-elastic and isotropic. Ceramic

disc assumed the mechanical property of lithium disilicate (96 GPa and 0.23

Poisson’s ratio). Friction between the loading systems and the cylinder was

considered negligible. Constraints were applied at the edges of the ceramic disc, to

avoid the dislodgement of the specimen. Static structural analysis considering non-

linear contact was performed (MSC Marc 2010, MSC Software Corporation) and

the results were analyzed using von Mises (VM), and Maximum Principal (MPS). In

study 1, significant differences were observed for the flexural strength values

x

obtained with the different testing methods, with higher values for the biaxial

flexural test than for the three point bending. Higher stress concentration was

found in the specimens at the contact areas corresponding to the loading point and

supports for the both test methods. The results of study 2 showed that more stress

concentration was revealed at load point and support areas for all test designs.

The same pattern of stress concentration was produced for the different

proportions of piston on three ball test. For study 1 it was possible to conclude that:

(I) for flexural strength values, statistical differences were verified for the same

material when different testing methods (uniaxial and biaxial flexural strength) were

performed. For study 2, according to the von Misses and Maximum principal stress

analysis reducing the proportion of ISO 6872 the stress concentration increases,

however, the stress concentration at the testing discs was influenced by the

different test design.

Key Word: Finite element analysis; Dental ceramics; Flexural strength, Biaxial

flexural strength

xi

SUMÁRIO

DEDICATÓRIA.................................................................................................xiii

AGRADECIMENTOS......................................................................................xvii

INTRODUÇÃO .................................................................................................... 1

CAPÍTULO 1- Influence of ISO 6872 testing methods for assessing the

flexural strength of dental ceramics ................................................................ 5

CAPÍTULO II - PROPORTIONING THE BIAXIAL FLEXURAL TEST FOR

DENTAL CERAMICS EVALUATION: A FINITE ELEMENT ANALYSIS ......... 22

CONSIDERAÇÕES ........................................................................................... 34

CONCLUSÃO .................................................................................................... 36

REFERÊNCIAS ................................................................................................. 37

 

 

xii

xiii

DEDICATÓRIA

A Deus,

Sou eternamente grato a Deus pelo dom da vida e pela possibilidade de utilizá-la

para o bem. Obrigado Pai, por sua inestimável bondade e por permitir mais esta

conquista. Agradeço pelo acolhimento nos momentos difíceis, pela ajuda na

superação dos obstáculos e provações.

Aos meus pais, Francisco e Maria de Jesus,

Exemplos de superação e conquista, vejo a figura de vocês. Duas pessoas

íntegras que conseguiram criar os filhos com princípios, dando a maior riqueza

que uma pessoa pode receber em sua vida: a educação. Deus me abençoou com

uma enorme fortuna dando-me uma família tão unida como a nossa. Obrigado Pai

e Mãe por seu amor e carinho, pela disponibilidade, por suas orações diárias,

pelas preocupações e pelo grande esforço em minha formação. Pai, Mãe, esta

vitória pertence a vocês. Obrigado por tudo!

Aos meus irmãos, Francisco (in memoriam), Paulo, Carlos e Adriana,

Agradeço pelo enorme carinho e pela compreensão que sempre tiveram e por

participarem efetivamente da minha formação. Sou muito orgulhoso por ter vocês

como irmãos, pois são exemplos de vida para mim! Cada palavra deste trabalho

tem a participação de vocês.

xiv

Às minhas cunhadas Mirani, Luciana e Janice e ao meu cunhado Vanderlei,

Pelo amor, carinho, amizade, em fim tudo que já fizeram por mim e por serem tão

importantes na minha vida.

À Sofia,

Mesmo distante, todas as vitórias da minha vida, serão dedicadas a você, você é

muito especial para mim e sempre ocupará um lugar no meu coração. O Papai te

ama.

À Sabrina,

Por estar ao meu lado, me dando força, me ensinando a ser um ser humano

melhor, apesar do pouco tempo já faz parte da minha vida e ocupa um grande

espaço no meu coração. Obrigado por tudo meu amor!

xv

AGRADECIMENTOS ESPECIAIS

Ao Prof. Lourenço Correr Sobrinho,

agradeço pela fantástica oportunidade de compartilhar conhecimentos e de

receber opiniões sempre tão relevantes. Muito obrigado pela amizade, confiança,

por sua disponibilidade e pela ajuda crucial na realização deste estudo.

Ao Prof. Carlos José Soares,

tenho imensa gratidão por seus inestimáveis auxílios em todos os momentos de

minha formação profissional e por sua amizade. Muito obrigado por tudo!

Ao Prof. Alfredo Júlio Fernandes Neto,

muito obrigado pela amizade e por todos os ótimos conselhos. Mais ainda, por

mostrar a responsabilidade que os Cirurgiões-dentistas têm com a sociedade

como profissionais da área de saúde e o potencial dos mesmos para propiciar

mais conforto à vida das pessoas.

Ao Prof. Adérito Soares da Mota,

agradeço muito por todos os conselhos e lições. Muito obrigado pelos vários

ensinamentos sobre a arte da Odontologia. Espero poder aprender com você̂

muito mais como pessoa e profissional nos próximos anos. Que Deus abençoe o

seu caminho e continue te iluminando!

xvi

aos Professores, Mário Alexandre Coelho Sinhoreti, Simonides Consani,

Mario Fernando de Goes, Marcelo Giannini, Regina Maria Puppin Rontani,

Américo Bortolazzo Correr, Ana Rosa Costa Correr e demais funcionários do

programa de Pós-Graduação em Materiais Dentários, na pessoa de Marcos

Blanco e Selma Segalla. Muito obrigado pela boa convivência, por seus grandes

ensinamentos e por me darem a oportunidade de aprender tanto com vocês.

Levarei esse conhecimento com o nome da FOP-UNICAMP com muito orgulho!

Aos amigos Lucas Dantas e Luís Raposo, pela amizade e por toda ajuda ao

longo do doutorado, sem vocês este trabalho não seria possível! Por me ajudar

nos momentos mais difíceis, tenho vocês como irmãos.

A todos os colegas que participaram indiretamente dessa jornada, em

especial Rafael Pacheco, Thiago Preto, Eveline Soares, Fabian Murilo, Gabriel

Abuna,

Aos demais integrantes da República, Anderson (Dinho) e Bruno Barreto,

pela paciência, amizade, e pelas conversas, sou muito grato por tudo!

xvii

AGRADECIMENTOS

À Universidade Estadual de Campinas – UNICAMP,

Pela oportunidade de uma formação concreta fundamentada em uma estrutura

sólida de ótima qualidade, na pessoa do Reitor José Tadeu Jorge

À Faculdade de Odontologia de Piracicaba – FOP-UNICAMP,

Pela formação tão completa que tive nesta Instituição. Sou grato por todos os

grandes mestres que tive e por todos os ensinamentos que recebi. Levarei o nome

desta escola com muito orgulho. Agradeço ao diretor Guilherme Elias Pessanha

Henriques e diretor associado Francisco Heiter Neto.

À Faculdade de Odontologia da Universidade Federal de Uberlândia,

Pela grande oportunidade de associação e troca de conhecimentos e também pela

ótima receptividade.

À CAPES,

pela concessão de bolsa, a qual teve extrema importância no desenvolvimento

deste trabalho.

AO CNPq,

Pelo apoio (Grant 303928/2009–3), para realização desse trabalho.

xviii

xix

“Se eu enxerguei mais longe é porque estava

sobre os ombros de gigantes”

Albert Einstein

xx

1

INTRODUÇÃO

Na Odontologia contemporânea, existe uma procura cada vez mais

acentuada por procedimentos estéticos devido à inserção da população em uma

sociedade na qual a aparência tem importância significativa na aceitação e

autoestima (Resende 2003).

As cerâmicas odontológicas, com uma série de características intrínsecas

desejáveis, como biocompatibilidade, alta resistência à compressão e abrasão,

estabilidade de cor, radiopacidade, estabilidade química, coeficiente de expansão

térmica próximo ao da estrutura dentária e excelente potencial para simular a

aparência dos dentes naturais, apresentam-se como um dos principais materiais

na ciência e arte da reconstrução dentária (Lehner 1998, Resende 2003, Reskalla

2005).

A confecção de restaurações em cerâmica livre de metal tornou-se possível

graças ao surgimento da odontologia adesiva e de cerâmicas reforçadas. Esses

sistemas baseiam-se no desenvolvimento de materiais de infraestrutura, em

substituição às ligas metálicas que, associados às cerâmicas de cobertura, podem

proporcionar excelente resultado estético sem comprometer o desempenho

mecânico indispensável à longevidade clínica da restauração (Anusavice 2005,

Reis 2006).

Desde a introdução até os dias atuais, os materiais cerâmicos têm evoluído

quanto à composição e diferentes métodos de processamento, podendo ser

2

classificadas em: vítreas (feldspáticas, leucita e dissilicato de lítio,), à base de

alumina (óxido de alumina) e à base de zircônia (policristais de zircônia

estabilizados por óxido) (Conrad et al., 2007).

No presente estudo foi utilizada a cerâmica à base de dissilicato de lítio IPS

Empress 2 (Ivoclar Vivadent), a qual é aquecida e injetada no interior de um bloco

de revestimento. Os cristais de dissilicato de lítio são densamente dispostos e

unidos à matriz vítrea. Em 2009, foi introduzido no mercado um novo sistema com

aumento na quantidade de dissilicato de lítio, denominado IPS e.max Press

(Ivoclar vivadent). Este sistema surgiu com o intuito de estender a indicação para

prótese parcial fixa de três elementos, até o segundo pré-molar, sendo também

indicado para confecção de coroas unitárias anteriores e posteriores, inlays,

onlays e facetas laminadas. A resistência à flexão varia entre 300 – 400 MPa

(Giordano 2000, Cattel 2001, Itinoche 2002).

Métodos para determinar a resistência à flexão de materiais cerâmicos são

uniaxial (por exemplo, três ou quatro pontos para flexão de barras) ou testes de

flexão biaxial (por exemplo,piston on ring, piston on three ball, ball on ring e ring on

ring). Ensaios de resistência à flexão biaxial têm várias vantagens sobre os testes

uniaxiais porque estados de tensão multiaxial são produzidos e falhas de borda

são eliminados (Thompson 2004).

Os testes de flexão uniaxial de três ou quatro pontos têm sido utilizados há

muito tempo para determinar a resistência mecânica das cerâmicas dentais.

Entretanto, na maioria das aplicações protéticas ocorrem situações de cargas

biaxiais (Huang &Hsue 2011).

3

Já, os testes de flexão biaxial são utilizados extensivamente para

determinar a resistência à flexão biaxial de materiais cerâmicos. Em função das

coroas totalmente cerâmicas serem normalmente confeccionadas como

laminados, existe a necessidade de formular equações que correlacionem a

resistência à flexão biaxial das cerâmicas odontológicas multilaminadas à carga de

fratura de discos multilaminados submetidos aos ensaios de flexão (Thompson,

2004).

Como resultado, os testes de flexão biaxial se tornam cada vez mais

popular como um meio de medir a resistência coesiva das cerâmicas

odontológicas (Cattell, 1999). Nestes testes, um disco com espessura fina é

suportado por um anel (ou três esferas), ao redor da sua borda e carregado

através de um anel menor coaxial, um pistão, ou uma esfera em sua região

central. O disco é submetido a um momento biaxial em sua região central e as

tensões são biaxiais nesta região (Huang & Hsue 2011).

Entretanto, as informações do comportamento estrutural interno dos

espécimes durante a aplicação de carga não são mostradas nos ensaios

mecânicos destrutivos, visto que estas cargas geram tensões que resultam em

deformações estruturais, podendo acentuar de acordo com a geometria e

propriedades mecânicas, ultrapassando o limite plástico do material (Soares,

2006; Soares et al., 2008). Desse modo, a associação dos ensaios destrutivos

com metodologias não-destrutivas e teóricas como o método de elementos finitos

(MEF), é necessária para análise da interferência de pequenos fatores no ensaio

mecânico.

4

Os objetivos do presente estudo in vitro e in sítico, composto por dois

artigos científicos, foram:

1. Avaliar o efeito do tipo de ensaio mecânico na resistência à flexão de uma

cerâmica odontológica (Capítulo 1);

2. Avaliar o efeito do dimensionamento do teste de resistência à flexão biaxial

no teste de cerâmicas odontológicas (Capítulo 2).

                   

5

CAPÍTULO 1- Influence of ISO 6872 testing methods for assessing the

flexural strength of dental ceramics

ABSTRACT

The aim of this study was to assess the influence of different test methods for

assessing the flexural strength of dental ceramics according to the ISO 6872

standard. Stress distribution was evaluated on the biaxial flexural and three-point

bending testing schemes by Finite Element Analysis (FEA) and the laboratory tests

were also carried out. Using CAD/CAM system, ten wax disc (Ø:12 mm; thickness:

1.2 mm) and beam (length 25 mm; thickness, 5 mm, height 2 mm) patterns were

milled. Then, the patterns were invested and lithium dissilicate-based ceramic

ingots were pressed. For FEA, three-dimensional (3D) models were generated and

meshed using eight-node hexahedral elements and analysis was performed

according to the tests. Results were analyzed using von Mises stress and

Maximum Principal Stress. Significant differences were observed for the flexural

strength values obtained with the different testing methods, with higher values for

the biaxial flexural test than for the three point bending. Higher stress concentration

was found in the specimens at the contact areas corresponding to the loading point

and supports for the both test methods. it was possible to conclude that: for flexural

strength values, statistical differences were verified for the same material when

different testing methods (uniaxial and biaxial flexural strength) were performed.

6

Key words: biaxial flexural strength, dental ceramics, finite element analysis,

flexural strength, ISO standard, three point bending.

1. Introduction

One restorative material that has developed the most in the last 25 years

are dental ceramics, with a significant progress in mechanical properties, allowing

restorations with excellent masticatory resistance and esthetics properties. Those

changes have resulted in increased demand for ceramic restorations in dentistry

(Rizkalla & Jones, 2004). Laboratory mechanical tests are very important for

improving dental ceramics, namely as, flexural strength tests, including uni and

biaxial set ups.

For uniaxial three-point bending test, particular concerns involve wedging

stresses at contact points and counter moments produced by friction at the

loading-point-specimen interface (Quinn & Morrell 1991). As an alternative to

uniaxial test, biaxial flexural test has been used to determine fracture strength of

dental ceramics (Thompson 2004), since in most prosthetic applications, biaxial

loads situations occur (Huang & Hsue 2011). Biaxial flexural strength tests have

several advantages over uniaxial tests because multiaxial stress states are

produced and boundary faults are eliminated. Thus, biaxial flexural strength tests

are becoming increasingly popular for assessing the strength of dental ceramics

(Cattell 1999). For these tests, a thin disk is supported by three balls near its

7

periphery and charged through a piston at its central region. The disc is subjected

to a biaxial moment at its central region and stresses are biaxial at this region

(Huang & Hsue 2011).

However, information regarding internal structural behavior of the specimen

during the load application is not available in destructive mechanical tests. This

occur since these loads produce stresses that results in structural distortion, and it

may increase according to specimen geometry and mechanical properties,

exceeding the plastic regimen to structure failure. In this case, destructive

mechanical tests associated to non-destructive methods as finite element analysis

(FEA) are necessary to analyze the influence of mechanical tests on the results

(Soares, 2006; Soares et al., 2008).

Therefore, the aim of this study was to assess the influence of different test

methods for assessing the flexural strength of dental ceramics according to ISO

6872 standard. Stress distribution was evaluated on the biaxial flexural and three

point bending schemes by FEA and laboratory tests were performed as well. Then,

two work hypotheses were proposed: 1) the flexural strength for a lithium

dissilicate-based dental ceramic would not be influenced by the flexural strength

test method (uniaxial and biaxial); 2) the stress distribution for the specimens

would not differ between the both tests.

8

2. Materials & methods

2.1. Specimen preparation

A dental CAD/CAM system (VIPI MINI; Vipi Produtos Odontológicos,

Pirassununga, SP, Brazil), was used for milling ten wax disc (Ø:12 mm; thickness:

1.2 mm) and beam (length: 25 mm; thickness: 5 mm; height: 2 mm) patterns

according to ISO 6872 standard. Wax patterns (discs and beams) were then

invested in phosphate-based material (IPS PressVest Speed, Ivoclar Vivadent),

and wax was eliminated in an automatic furnace (Vulcan A- 550, Degussa-Ney,

Yucaipa, CA, USA) at 850ºC for one hour. Lithium dissilicate ceramic ingots (IPS

e.max Press, Ivoclar-Vivadent, Schaan, Liechtenstein) were pressed into molds in

an automatic press furnace (EP 600, Ivoclar-Vivadent). After cooling, specimens

were divested and then finished with wet silicon papers up to 1200-grit and

polished in a polishing machine (Struers DP 10, Panambra, São Paulo, SP, Brazil)

with diamond paste (10 µm). The dimensions of each specimen were verified with

a digital caliper (Mitutoyo Corp, Kawasaki, Japan) with ±0.05 mm tolerance.

2.2. Biaxial Flexural testing

The flexural strength was measured using biaxial flexural strength test

scheme, according to ISO 6872 standard for dental ceramics. To support the test

specimen, three hardened steel balls 3.2 mm in diameter, were positioned 120°

apart on a support circle with 10 mm diameter (Fig. 1). Disc shaped specimens

were positioned concentrically on the supports and loading was applied at their

9

center with a flat piston 1.2 mm in diameter. Test was carried out in an universal

testing machine (Instron 4411, Instron Corp.) at a cross-head speed of 0.5 mm/min

until fracture.

Biaxial flexural strength (MPa) was calculated using the following equation,

according to ISO 6872 guidelines:

𝑺 = −𝟎,𝟐𝟑𝟖  𝟕𝑷 𝑿− 𝒀  /𝒅𝟐 (1)

where, S is the maximum centre tensile stress (MPa), P is the total load causing

fracture (N), X = 𝟏+ 𝒗 𝑰𝒏  (𝒓𝟐/𝒓𝟑)𝟐 +   (𝟏− 𝒗)/𝟐  ((𝒓𝟐/𝒓𝟑)𝟐 , Y = 𝟏+ 𝒗 𝟏+

𝑰𝒏(𝒓𝟐/𝒓𝟑)𝟐 + (𝟏− 𝒗)(𝒓𝟐/𝒓𝟑)𝟐 . In which, 𝒗 is the Poisson’s ratio (assumed as

0.25); 𝒓𝟏 is the radius of support circle (mm); 𝒓𝟐 is the radius of loaded area (mm);

r3𝒓𝟐 is the radius of specimen (mm); and d is specimen thickness at fracture origin

(mm).

2.3 . Uniaxial Flexural testing (Three-point bending)

For three-point bending test, ceramic beams were placed flat on a jig with

rounded supporting rods 2.0 mm in diameter, placed 20 mm apart. Specimens

were loaded at the center with a rounded 2.0 mm rod at a crosshead speed of 0.5

mm/min until fracture, using an universal testing machine (Instron 4411, Instron

Corp., Canton, MA, USA), according to testing scheme proposed by ISO 6872.

For flexural strength calculation (σ), the following equation was used: σ=

10

3Wl/2bd2, where W is fracture load (N); l is span length between bearers (mm) and

loading points (here a = L/2); b is specimen width (mm); and d is specimen

thickness (mm).

2.4 . Statistical analysis

After checking for normality and homogeneity, the mean flexural strength

values for the both groups were compared using one-way analysis of variance

(ANOVA) followed by Tukey post hoc test at a 95% confidence level.

2.5 . Finite Element Analysis

Three-dimensional (3D) models simulating the experimental groups were

generated and meshed using eight-node hexahedral elements (MSC Mentat 2010,

MSC Software Corporation, Santa Ana, CA, USA) (Fig. 1A e 1B). The ceramic

specimens were considered homogeneous, linear-elastic and isotropic. Mechanical

properties for lithium dissilicate-based ceramic were obtained by literature review

and defined considering the elastic modulus as 120 GPa (E) and Poisson’s ratio

0.25. Loading/supporting assemblies were generated following the laboratory tests,

according to ISO 6872 standard. Contacts were simulated assuming a 0.3

coefficient of friction (Novais et al., 2011), and same theoretical loading was

applied perpendicularly to beams. Static structural analysis was performed

considering non-linear contacts and constraints at X and Z axes. Qualitative and

nodal quantitative results were analyzed using von Mises and Maximum Principal

Stress.

11

Fig. 1. Numerical models of: (A) Biaxial flexural testing scheme (piston on three

ball); and (B) Uniaxial flexural testing scheme (three point bending) (*according to

ISO 6872 standard).

3 Results

3.1. Flexural Strength

Mean and standard deviations of flexural strength data for the two

experimental groups are shown in Table I. Significant differences were observed

for the flexural strength values obtained with the different testing methods, with

higher values for the biaxial flexural test than for the three point bending.

Table I – Mean flexural strength (MPa) and standard deviation (±) for the biaxial

flexural (piston on three ball) and uniaxial flexural (three point bending) testing

A B

12

schemes.

Three Point Bending Piston on Three Ball

Flexural Strength 225.69±27.02B 351.73±28.10A

*Values followed by different latters are statistically different (p<0.05).

3.2. Finite Element Analysis

Higher stress concentration was found in the specimens at the contact areas

corresponding to the loading point and supports for the both test methods (Fig. 2

and 3). Biaxial flexural testing was less influenced by specimen geometric

configuration (Fig. 3). The disc specimen shape seems to promote better seating

and stress distribution. For three-point bending test, it was possible to notice a non-

homogeneous stress concentration region under the loading point, on stress

surface, as well for biaxial flexural strength, where the maximum stress

concentration occurred non-homogenously under the loading point.

13

Fig. 2. Finite element results for the three point bending testing scheme: A-C- von

Mises stress in top view; D-E- Maximum principal stress in bottom view.

Fig. 3. Finite element results for the piston on three ball testing scheme: A-C- von

Mises stress in top view; D-E- Maximum principal stress in bottom view.

The quantitative stress distribution for the three point bending and piston on

three ball testing schemes is detailed on Figs. 4 and 5. Higher peaks of stress were

located at the center of the specimens (beam and disc).

14

Fig. 4. Graph plot of Maximum Principal Stress for three point bending and piston

on three ball testing schemes (*Values obtained from the central nodes at the

bottom of specimens).

Fig. 5. Graph plot of von Mises stress for three point bending and piston on three

ball testing schemes (*Values obtained from the central nodes at the bottom of

specimens).

4 Discussion

Flexural strength is defined as a material property of resisting stresses that

cause bending, without fracture (Dauvillier et al., 2000; Walker et al. 2006). This

property combines compression and tensile forces and can be measured by

uniaxial or biaxial tests (Suansuwan & Swain, 2001; Yilmaz et al., 2007; Pick et al.

2010).

15

Since this property is related to the elastic behavior, it is also composition-

dependent, being inherent to each material, and should not vary when the same

material is evaluated by different methods. However, this study showed significant

difference for the flexural strength values of the same ceramic material when

different testing methods (uniaxial and biaxial flexural schemes) were used. Thus,

the first hypothesis was rejected, since the flexural strength of the lithium

dissilicate-based ceramic was influenced by the test method.

Several factors can influence results in a bending test, as follows: structural

parameters, such as inclusion of voids and cracks (Huang & Hsue 2011), flaws on

surface or within volume, specimens dimension, gradients, and state voltage (Ban

& Anusavice, 1990). Furthermore, the effect of geometry (Alshehri 2011), shape

and size of specimen and test conditions (Jin et al., 2004) can strongly influence

the results of stress tests. Surface defects were identified as fracture initiation sites

in 86.6% to 96.6% of specimens (Rodrigues et al., 2008). The influence of many of

these factors can be eliminated or reduced by following the ISO 6872 (2008) for

three-point bending and biaxial flexural test in dental ceramics. This standard

describes exactly how specimens should be made, followed by accurate

measurement procedures, including necessary testing equipment (often illustrated

with diagrams), control of environmental parameters, sampling and data

processing (Della Bona et al., 2011).

Due to the difficulties in obtaining specimens without imperfections and to

perfectly perform any laboratory testing method, the use of standardizations should

lead to better control and less influence of technique for in vitro studies.

16

Finite element analysis showed differences for tensile stress distribution

between testing methods. As the stress distribution in the specimens was affected

by the testing scheme, the second hypothesis was also rejected. For the three-

point bending test, high tensile stress concentration was observed in large areas in

the opposite region to the point load, which is compatible with the characteristics of

this mechanical test. For the biaxial flexural test, tensile stresses were distributed

along the area between support points, with highest concentration peaks in the

opposite area to the load point, with no stress concentration on the edges, as

reported in other studies (Abu-Hassan et al, 1998; Fischer et al, 2008). Due to

these characteristics, biaxial flexural strength may produce less data variation

(Wen et al., 1999).

For three-point bending test specimens, the majority of fractures occurred in

the specimen center, at the area below loading, which is consistent with reports

from other studies (Fischer et al., 2008). For this test, all specimens showed

failures with two fracture fragments. However, for biaxial flexural strength test

specimens, due to stress distribution, fractures occurred in different directions,

resulting in two or three disc fragments. Thus, according to finite element analysis,

all failures occurred in regions where high stress concentrations were observed,

which shows a relation between the results obtained in laboratory testing with finite

elements analysis.

5 Conclusion

17

Within the limitations of this study, it was possible to conclude that: (I)

significant differences were found in the flexural strength for the same ceramic

material with the both testing methods evaluated; (II) all laboratory failures

occurred in regions in which high stress concentration was observed in the finite

element analysis.

References

Abu-Hassan MI, Abu-Hammad OA, Harrison A. Strains and tensile stress

distribution in loaded disc-shaped ceramic specimens. An FEA study. J Oral

Rehabil. 1998 Jul;25(7):490-5.

Alshehri SA. An investigation into the role of core porcelain thickness and

lamination in determining the flexural strength of In-Ceram dental materials. J

Prosthodont. 2011 Jun;20(4):261-6.

Ban S, Anusavice KJ. Influence of test method on failure stress of brittle dental

materials. J Dent Res. 1990 Dec;69(12):1791-9.

Cattell MJ, Knowler JC, Clarke RL, Lynch E. The biaxial flexural strength of two

pressable ceramic systems.J Dent 1999;27:183–96.

18

Dauvillier BS, Feilzer AJ, De Gee AJ, Davidson CL. Visco-elastic parameters of

dental restorative materials during setting. J Dent Res. 2000 Mar;79(3):818-23.

Della Bona A, Wozniak WT, Watts DC. International dental standards--order out of

chaos? Dent Mater. 2011 Jul;27(7):619-21.

Fischer J, Stawarczyk B, Hämmerle CH. Flexural strength of veneering ceramics

for zirconia. J Dent. 2008 May;36(5):316-21.

Huang CW, Hsueh CH. Piston-on-three-ball versus piston-on-ring in evaluating the

biaxial strength of dental ceramics. Dent Mater. 2011 Jun;27(6):e117-23. Epub

2011 Apr 2.

ISO 6872. Dentistry-dental ceramics. International Organization for

Standardization; 2008.

Jin J, Takahashi H, Iwasaki N. Effect of test method on flexural strength of recent

dental ceramics. Dent Mater J. 2004 Dec;23(4):490-6.

Pick B, Meira JB, Driemeier L, Braga RR. A critical view on biaxial and short- beam

uniaxial flexural strength tests applied to resin composites using Weibull,

fractographic and finite element analyses. Dent Mater. 2010 Jan;26(1):83-90.

19

Quinn GD, Morrell R. Design-data for engineering ceramics—a review of the

flexure test. J Am Ceram Soc 1991;74:2037–66.

Rizkalla AS, Jones DW. Mechanical properties of commercial high strength

ceramic core materials. Dent Mater 2004;20:207-12.

Rodrigues SA Jr, Ferracane JL, Della Bona A. Flexural strength and Weibull

analysis of a microhybrid and a nanofill composite evaluated by 3- and 4-point

bending tests. Dent Mater. 2008 Mar;24(3):426-31.

Soares CJ, Martins LR, Fonseca RB, Correr-Sobrinho L, Fernandes Neto AJ.

Influence of cavity preparation design on fracture resistance of posterior Leucite-

reinforced ceramic restorations. J Prosthet. Dent.2006;95(6):421-9.

Soares CJ, Soares PV, Santos-Filho PC, Armstrong SR. Micro tensile specimens

attachment and shape-finite element analysis. J Dent Res. 2008 Jan;87(1):89-93.

Soares PV, Santos-Filho PC, Martins LR, Soares CJ. Influence of restorative

technique on the biomechanical behavior of endodontically treated maxillary

premolars. Part I: fracture resistance and fracture mode. J Prosthet

Dent.2008;99(1):30-7.

20

Scherrer SS, Wiskott AH, Coto-Hunziker V, Belser UC. Monotonic flexure and

fatigue strength of composites for provisional and definitive restorations. J Prosthet

Dent 2003;89:579–88.

Scherrer SS, Quinn JB, Quinn GD, Kelly JR. Failure analysis of ceramic clinical

cases using qualitative fractography. Int J Prosthodont 2006;19:185–92.

Suansuwan N, Swain MV. Determination of elastic properties of metal alloys and

dental porcelains. J Oral Rehabil. 2001 Feb;28(2):133-9.

Thompson GA. Determining the slow crack growth parameter and Weibull two-

parameter estimates of bilaminate disks by constant displacement-rate flexural

testing.Dent Mater. 2004 Jan;20(1):51-62.

Walker MP, Haj-Ali R, Wang Y, Hunziker D, Williams KB. Influence of

environmental conditions on dental composite flexural properties. Dent Mater. 2006

Nov;22(11):1002-7.

Wen MY, Mueller HJ, Chai J, Wozniak WT. Comparative mechanical property

characterization of 3 all-ceramic core materials. Int J Prosthodont. 1999 Nov-

Dec;12(6):534-41.

21

Yilmaz H, Aydin C, Gul BE. Flexural strength and fracture toughness of dental core

ceramics. J Prosthet Dent. 2007 Aug;98(2):120-8.

22

CAPÍTULO II - PROPORTIONING THE BIAXIAL FLEXURAL TEST FOR

DENTAL CERAMICS EVALUATION: A FINITE ELEMENT ANALYSIS

SUMMARY

Numeric simulations using Finite Elements Analysis (FEA) have been widely

used in the biomedical industry and specifically in dental field in the last years.

Thus, the aim of this study was to evaluate the proportioning of the biaxial flexural

test for dental ceramic evaluation by finite element analysis. Three-dimensional

(3D) finite element models were generated and meshed using eight-node

hexahedral elements simulating the biaxial bending test according to ISO 6872

parameters for dimensions (100%) and the proportioning of the original test set up

to 75% and 50%. The loading piston and supporting spheres were considered

contacting surfaces and a 120 N load was applied. Ceramic discs assumed lithium-

disilicate mechanical properties (120 GPa and 0.23 Poisson’s ratio) and were

consideres homogeneous, linear-elastic and isotropic. Friction between contact

bodies and cylinder was considered negligible. Constraints were applied at the

edges of the ceramic disc. Static structural analysis considering non-linear contacts

was performed and results were analyzed using von Mises (VM), and Maximum

Principal stress (MPS). FEA showed higher stress concentration at the load point

and support contacting areas to the disc for all test dimensions. Similar stress

distribution pattern was verified for the different proportions used for the piston on

three ball test. According to von Misses and Maximum principal stress analysis,

reducing the dimensions of the biaxial flexural test proposed by ISO 6872 caused

23

increased stress concentration; however, stress distribution pattern at testing discs

was not influenced by the proportioned test designs. Thus, the dimensions of the

biaxial bending test set up can be reduced by proportioning without affecting

flexural strength results.

INTRODUCTION

Dental ceramics are brittle materials, thus, sensitive to tensile stresses.

Different test methods have been proposed to evaluate the mechanical properties

of ceramics. Test designs for evaluating the mechanical properties of monolithic

specimens and bond strength of bilayer specimens can be based on uniaxial

flexural tests, such as three-point bending (non-uniform central stress field) and

four-point bending (uniform central stress field), and on biaxial flexural tests

(reduced edge failures as compared with the two previous test designs) (1).

Three-point bending test is largely dependent on the surface roughness of

specimen. Therefore, strength measurement of brittle materials using biaxial

flexural conditions rather than uniaxial flexural is often considered more reliable,

because maximum tensile stresses occur within central loading area, and

unfinished edge failures are eliminated. This allows slightly uneven specimens to

be tested and results are not affected by surface conditions. Thus, biaxial flexural

test should produce less variation in data for strength determination on brittle

materials (2).

24

Due to the costs involved for in vivo studies, numeric simulations and in vitro

testing approaches are frequently used by scientists and manufacturers of

biomedical devices. Study design analysis is first accomplished on computer

and/or in simulated oral environment conditions previously to be tested in clinical

experiments. When best design or material has been refined, the actual

experiment may be conducted. Modeling and simulation step saves time and costs,

reducing risks from conducting the study, or clinical trial, in vivo (3).

Virtual prototyping (numeric simulation) using Finite Elements Analysis (FEA)

has been widely applied in biomedical industry for development, design,

engineering, testing, certificating and production of several materials. The use of

FEA in dental research has been significantly refined during last decade (4). Thus,

the aim of this study was to evaluate the proportioning of the biaxial flexural test for

dental ceramic evaluation by finite element analysis. The hypothesis to be tested

would be that the different dimensions of the biaxial flexural test would not alter the

stress distribution in the disc specimens.

MATERIALS AND METHODS

Strain and stresses under a given loading can be calculated by finite element

(FEA) analysis on the basis of specimen geometry, boundary conditions, and

material properties. Numeric methods such as FEA showed good correlations with

experimental methods. Three-dimensional (3D) finite element models were

25

generated and meshed using eight-node hexahedral elements (MSC Mentat 2010,

MSC Software Corporation, Santa Ana, CA, USA) simulating the biaxial flexural

test according to ISO 6872 parameters for test and specimen dimensions (100%)

and the proportioning of the original test set up to 75% and 50% (Fig. 1). To

support the test disc specimen, three hardened steel balls 3.2 mm in diameter,

were positioned 120° apart on a support circle with 10 mm diameter. Disc shaped

specimens, 1.2 mm thick and 12 mm in diameter, were positioned concentrically

over the supports and loading was applied at their center with a flat piston 1.2 mm

in diameter. Disposal and measures of test assembly are described in ISO 6872.

Figure 1. (A) Numerical models of piston on three ball according ISO 6872.

The loading piston and supporting spheres were considered contacting

surfaces and a 120 N load was applied. Ceramic discs assumed lithium-disilicate

mechanical properties (120 GPa and 0.23 Poisson’s ratio) and were consideres

26

homogeneous, linear-elastic and isotropic (5). Friction between contact bodies and

cylinder was considered negligible. Constraints were applied at the edges of the

ceramic disc. Static structural analysis considering non-linear contacts was

performed (MSC Marc 2010, MSC Software Corporation). Qualitative and nodal

quantitative results were analyzed using using von Mises (VM) and Maximum

Principal stress (MPS).

RESULTS

FEA showed higher stress concentration at load point and support contacting

areas to the disc for all test dimensions. Similar stress distribution pattern was

verified for the different proportions used for the piston on three ball test scheme.

According to von Misses and Maximum principal stress analysis, reducing the

dimensions of the biaxial flexural test proposed by ISO 6872 caused increased

stress concentration; however, stress distribution pattern at testing discs was not

influenced by the proportioned test designs (Figs. 2-4).

Graph plots were obtained from the stress verified in the nodes located at the

bottom of the finite element models considering the biaxial flexural test dimensions

of ISO 6872 in 100%, 75% e 50%). Von Mises stress values are detailed in Figure

5. Models proportioned to 75% and 50% of the original ISO 6872 dimensions

exhibited higher peaks of stress near the point load. ISO 6872 model (100%)

showed lower stress concentration on the disc than the other models, with lower

stresses at loading point. Despite the different stress peaks, the stress distribution

27

pattern was similar for the three models. The detailed Maximum Principal Stress

showed compression stress at the loaded surface and tensile stress at opposite

area for all biaxial flexural test dimensions (Fig. 6).

Figure 2. Finite element results for piston on three-ball test according to ISO

6872 original dimensions (100%): VM- von Mises stress in top view (a-c); MPS -

Maximum principal stress in bottom view (d-f).

Figure 3. Finite element results for piston on three-ball test proportioned to

28

75% of ISO 6872 original dimensions: VM- von Mises stress in top view (a-c); MPS

- Maximum principal stress in bottom view (d-f).

Figure 4. Finite element results for piston on three-ball test proportioned to

50% of ISO 6872 original dimensions: VM- von Mises stress in top view (a-c); MPS

- Maximum principal stress in bottom view (d-f).

29

Figure 5– Graph plot of von Mises stress for the biaxial flexural test

dimensions (ISO 6872: 100%, 75% and 50%) (*Values obtained from the central

nodes at the bottom of specimens).

Figure 6 – Graph plot of Maximum Principal stress for the Biaxial flexural test

dimensions (ISO 6872: 100%, 75% and 50%) (*Values obtained from the central

nodes at the bottom of specimens).

DISCUSSION

Many factors can influence results in flexural tests, such as structural

parameters, inclusion of voids and cracks (6), flaws on surface or bulk volume and

specimen dimensions (7). Furthermore, the effect of specimen geometry (8) and

test conditions (9) can strongly influence results for stress tests. Influence of most

30

of these factors can be reduced, or eliminated, by following ISO 6872 standards

(10).

For biaxial flexural test it is necessary to be careful during specimen

preparation in order to not introduce defects that are not present in regular clinical

situations (11). Thus, those types of tests are extremely dependent on surface

polishing and specimen edges (12). According to Yilmaz, (13) it is impossible to

eliminate all defects during specimen fabrication, which may cause several

variations in flexural strength values.

Intending to minimize interferences from internal flaws inherent from the

processing of brittle materials, especially ceramics, the present study proposed to

reduce the dimensions of ISO 6872 biaxial flexural load/support devices and

specimens by proportioning them. This fact would increase the accuracy of test

results, since this approach can reduce intrinsic flaws in the specimens.

Additionally, this reduction would decrease the costs to produce ceramic

specimens. By proportioning ISO 6872 original dimensions (100%) to 75% and

50% there was no difference among groups regarding stress direction and

distribution. Specimen proportioning did not influence the test also, resulting in a

biaxial bending moment, with higher stress accumulation in specimen center

because of the same load applied for all models (120 N). The proportioned

specimens showed compressive stresses in the region contacting with the loading

point and tensile stress in the area opposed to the load application, as it would be

expect for biaxial flexural test, not influencing the test (Figs 2, 3 and 4 d-e).

31

However, model proportioning changed stress concentration Thus, the

hypotheses was rejected. Stress values at the testing discs were influenced by the

different test dimensions. This could be explained by the fact that the dimensions

were proportioned, but, the loading was not altered among the models. In order to

make load proportioning, laboratory tests should generate data to support FEA.

Obtaining adequate mechanical properties that accurately characterize

materials behavior is essential for appropriate knowledge of dental materials. This

fact evidences the importance in providing suitable properties, which will be

decisive to results accuracy achieved with FEA method. Therefore, interaction

between laboratory and computational methodologies seems very important for

understanding biomechanical behavior of dental structures and restorative

materials (14).

The research design of this in silico study shows some intrinsic limitations,

such as using numeric analysis, only. However, our findings are in accordance to

previous investigations for biaxial flexural test. Future studies with experimental

assessments which may overcome these limitations would be of benefit.

Within the limitations of this study, finite element analysis showed that the

dimensions of the biaxial bending test set up can be reduced following

proportioning without affecting flexural strength results.

32

REFERENCES

1. Lin WS, Ercoli C, Feng C, Morton D. The effect of core material, veneering

porcelain, and fabrication technique on the biaxial flexural strength and weibull

analysis of selected dental ceramics. J Prosthodont. 2012 Jul;21(5):353-62.

2. Huang CW, Hsueh CH. Piston-on-three-ball versus piston-on-ring in evaluating

the biaxial strength of dental ceramics. Dent Mater. 2011 Jun;27(6):e117-23. Epub

2011 Apr 2.

3. Magne P. Virtual prototyping of adhesively restored, endodontically treated

molars. J Prosthet Dent. 2010 Jun; 103(6):343-51.

4. Ausiello P, Apicella A, Davidson CL, Rengo S. 3D-finite element analyses of

cusp movements in a human upper premolar, restored with adhesive resin-based

composites. J Biomech 2001;34:1269-77.

5. DeHoff PH, Barrett AA, Lee RB, Anusavice KJ. Thermal compatibility of dental

ceramic systems using cylindrical and spherical geometries. Dent Mater 2008;

24:744-52.

6. Huang CW, Hsueh CH. Piston-on-three-ball versus piston-on-ring in evaluating

the biaxial strength of dental ceramics. Dent Mater. 2011 Jun;27(6):e117-23. Epub

2011 Apr 2.

33

7. Ban S, Anusavice KJ. Influence of test method on failure stress of brittle dental

materials. J Dent Res. 1990 Dec;69(12):1791-9.

8. Alshehri SA. An investigation into the role of core porcelain thickness and

lamination in determining the flexural strength of In-Ceram dental materials. J

Prosthodont. 2011 Jun;20(4):261-6.

9. Jin J, Takahashi H, Iwasaki N. Effect of test method on flexural strength of

recent dental ceramics. Dent Mater J. 2004 Dec;23(4):490-6.

10. ISO 6872. Dentistry-dental ceramics. International Organization for

Standardization; 2008.

11. Kelly JR. Perspectives on strength. Dent Mater 1995;11:103-10.

12. Zeng K, Oden A, Rowcliffe D: Flexure tests on dental ceramics. Int J

Prosthodont 1996;9:434-9.

13. Yilmaz H, Aydin C, Gul BE. Flexural strength and fracture toughness of dental

core ceramics. J Prosthet Dent. 2007 Aug;98(2):120-8.

34

14. Soares CJ, Soares PV, Santos-Filho PC, Armstrong SR. Micro tensile

specimens attachment and shape-finite element analysis. J Dent Res. 2008

Jan;87(1):89-93.

CONSIDERAÇÕES

Ensaios mecânicos têm sido aplicados na avaliação do comportamento

físico-mecânico dos materiais odontológicos, tais como as cerâmicas

odontológicas. Esses testes são essenciais para o estudo, desenvolvimento e

implementação dos materiais. Os testes mais comumente utilizados na

odontologia objetivam na verificar das propriedades mecânicas ou a

qualidade/resistência de união na avaliação dos materiais. Entretanto, muitos dos

testes utilizados para caracterização dos materiais restauradores não são

realizados nos padrões necessários, levando a resultados ambíguos para

materiais similares. A falta de parametrização dos ensaios mecânicos aplicados na

avaliação dos materiais odontológicos tem sido fator de frequentes investigações

como forma de se obter resultados laboratoriais mais consistentes. Possibilitando

assim, predizer o desempenho dos mesmos nas aplicações clínicas com maior

confiabilidade.

O presente estudo demonstrou que os testes de flexão empregados na

verificação de cerâmicas odontológicas têm suas configurações modificadas de tal

forma que resultados bastante divergentes podem ser obtidos para um mesmo

35

material. Algumas aplicações dos ensaios mecânicos podem mesmo exceder a

indicação destes, fazendo com que resultados pouco confiáveis sejam obtidos.

Assim, é indicado maior padronização dos ensaios mecânicos utilizados no teste

de materiais odontológicos, devendo estes, serem executados de acordo com as

normas adequadas de forma que os mesmos ofereçam resultados mais confiáveis

e que possuam maior validade clínica. A aplicação de novas metodologias é

encorajada no sentido de romper paradigmas que possam existir sobre a

caracterização dos materiais odontológicos.

36

CONCLUSÃO

Dentro das limitações do presente estudo in vitro e in silico, foi possível

concluir no capítulo 1: (I) foram encontradas diferenças significativas na

resistência à flexão para o mesmo material cerâmico com ambos os métodos de

ensaio avaliados; (II) todas as falhas laboratoriais ocorreram em regiões onde a

concentração tensão elevado foi observado na análise de elementos finitos. Já no

capítulo 2 pode se concluir: a análise por elementos finitos mostrou que o

dimensionamento do teste de flexão biaxial, configurado pode ser reduzido

proporcionalmente sem afetar os resultados de resistência à flexão.

37

REFERÊNCIAS

ANUSAVICE, K. J. Materiais dentários de Phillips. 11 ed. Rio de Janeiro:

Guanabara Koogan. 2005. 412p.

BOTTINO, M. A. ; QUINTAS, A. F.; MIYASHITA, E.; GIANNINI,V. Estética em

reabilitação oral metal-free. São Paulo: ArtesMédicas, 2001.

CATTELL MJ, KNOWLER JC, CLARKE RL, LYNCH E. The biaxial flexural

strength of two pressable ceramic systems.J Dent 1999;27:183–96.

CONRAD HJ, et al. Current ceramic materials and systems with clinical

recommendations: a systematic review. J ProsthetDent. 2007; 98(5): 389-404.

COSTA, J. L. V.; et al. O estágio atual das cerâmicas odontológicas. PCL, 2006, 8

(40): 193-198.

CRAIG, R. G.; POWERS, J.M. Materiais Dentários Restauradores. 11 ed. São

Paulo: Santos , 2004.

DIB, L. L.; SADDY, M. S. (Coord).Atualização na clínica odontológica: estética

e prótese. vol.3. São Paulo: ArtesMédicas, 2006.

38

GIORDANO R. A comparation of all-ceramic restorative systems.Part 1.Gen Dent.

1999;47(6):566-70.

GIORDANO, R. A. A coparison of all-ceramic restorative system, Part 2.Gen Dent,

Chicago, Jan-Feb 2000. 48(1): 38-45.

GOMES E. A. et al. Cerâmicas odontológicas: o estado atual. Cerâmica 54

(2008) 319-325

HUANG CW, HSUEH CH. Piston-on-three-ball versus piston-on-ring in evaluating

the biaxial strength of dental ceramics.Dent Mater. 2011 Jun;27(6):e117-23. Epub

2011 Apr 2.

ITINOCHE, M.K. Estudo da ciclagem mecânica na resistência à flexão de

cerâmicas. (Tese de Doutorado). São José dos Campos:Faculdade de

Odontologia de São José dos Campos da UNESP;2002.

LEHNER, C. et al. Six-year clinical results of leucite reinforced glass ceramic inlays

and onlays. Acta Med. Dent. Helv. 2000. 3: 137-46.

MEZZOMO, E.; SUZUKI, R. M. et al. Reabilitação Oral Contemporânea. São

Paulo: Santos, 2006.

39

PARREIRA, G. G.; SANTOS, L. M. Cerâmicas Odontológicas-conceitos e

técnicas. São Paulo: Santos, 2005.

REIS, R.S.; CASEMIRO,L.; SILVA,F. R. Sistema Cercon: Sistema de zircônia

frezada por computador para prótese “metal-free”. In:LAURIA DIB,L.; SADDY,M.S.

(Coord.) Atualização Clínica em Odontologia. 1 ed. São Paulo: Artes Médicas,

2006.

RESENDE, C. A. Tipos de cerâmicas odontológicas. In: Cerâmicas

odontológicas [monografia]. Piracicaba: Faculdade de Odontologia de Piracicaba

Unicamp; 2003..

RESKALLA, H.N.F.; CHAVES FILHO, H.D.M.; SALGADO, I.O.; CHAVES NETTO,

H.D.M.; PANZERI, H. Estudo sobre resistência da união de porcelana em ligas de

Ni-Cr com e sem Berílio e ligas experimentais com titânio. J BrasClinOdontolInt,

2005; 9 (50/51): 234 – 43.

SILVA, J.S.A. et al. Cerâmicas Odontológicas. In: LIMA, F. Prótese dentária:

Fundamentos e técnicas reabilitação oral para todos. Florianópolis/SC: Ed.

Ponto, 2010, p. 253-276

SOARES CJ, MARTINS LR, FONSECA RB, CORRER-SOBRINHO L,

FERNANDES NETO AJ. Influence of cavity preparation design on fracture

40

resistance of posterior Leucite-reinforced ceramic restorations. J

ProsthetDent.2006;95(6):421-9.

SOARES PV, SANTOS-FILHO PC, MARTINS LR, SOARES CJ. Influence of

restorative technique on the biomechanical behavior of endodontically treated

maxillary premolars. Part I: fracture resistance and fracture mode. J Prosthet

Dent.2008;99(1):30-7.

SOARES PV, SANTOS-FILHO PC, QUEIROZ EC, ARAÚJO TC, CAMPOS RE,

ARAÚJO CA,SOARES CJ. Fracture resistance and stress distribution in

endodontically treated maxillary premolars restored with composite resin. J

Prosthodont. 2008 Feb;17(2):114-9.(a)

SOARES CJ, SOARES PV, SANTOS-FILHO PC, Armstrong SR.

Microtensilespecimes attachment and shape-finite element analysis. J Dent Res.

2008 Jan;87(1):89-93. (b).

SOARES CJ, SANTANA FR, CASTRO CG, SANTOS-FILHO PC, SOARES PV,

QianF,Armstrong SR. Finite element analysis and bond strength of a glass post

tointraradicular dentin: comparison between microtensile and push-out tests. Dent

Mater. 2008 Oct;24(10):1405-11. (c)

41

SOBRINHO, L.C.; BORGES, G.A.;SINHORETI,M.A.C.;CONSANI,S. Materiais

cerâmicos Cap.6. In: MIYASHITA,E.; FONSECA,A.S (Coord.). Odontologia

Estética: o estado da arte. São Paulo: ArtesMédicas, 2004.

THOMPSON GA. Determining the slow crack growth parameter and Weibull two-

parameter estimates of bilaminate disks by constant displacement-rate flexural

testing.Dent Mater. 2004 Jan;20(1):51-62.