aula 04 tubulações alunos

40
TQ095 – Utilidades e Instrumentação Aulas 04 : Dimensionamento/ projeto de tubulações. Diâmetro interno – critérios de velocidades e perda de carga recomendadas e diâmetro econômico. Cálculos para fluidos compressíveis e incompressíveis e mistura gás/líquido em dutos; Tubulação Industrial, Cálculo Autor : Pedro C. Silva Telles Cap 2 Prof Nara Patias

Upload: rafaela-campos-de-souza

Post on 23-Dec-2015

13 views

Category:

Documents


0 download

DESCRIPTION

Utilidades e instrumentação

TRANSCRIPT

Page 1: Aula 04 Tubulações Alunos

TQ095 – Utilidades e Instrumentação Aulas 04 : Dimensionamento/ projeto de tubulações. Diâmetro interno – critérios de velocidades e perda de carga recomendadas e diâmetro econômico. Cálculos para fluidos compressíveis e incompressíveis e mistura gás/líquido em dutos; Tubulação Industrial, Cálculo Autor : Pedro C. Silva Telles Cap 2

Prof Nara Patias

Page 2: Aula 04 Tubulações Alunos

Diâmetro de tubulações Critérios de projeto Velocidades recomendadas/econômicas

Perda de carga recomendada/100ft de tubo

Diâmetro econômico

O cálculo é iterativo, e deve ser refeito até que todas as condições estejam satisfeitas

Page 3: Aula 04 Tubulações Alunos

Diâmetro da tubulação

Como calcular o diâmetro adequado da tubulação?

Custo Total= Custo do Bombeamento +Custo tubulação

custo conjunto moto bomba: aquisição, instalação, operação e manutenção custo da linha: aquisição dos tubos, válvulas, conexões, mão de obra, etc

Page 4: Aula 04 Tubulações Alunos

(*) - cotação 06/2014 - http://www.metalica.com.br/cotacao-de-preco-tubos (**) http://www.tubosabc.com.br/tubos/tabela-de-classificacao-de-tubos.pdf (***) considerado aço carbono A-53 Gr A - Central de vapor ($) considerado aço carbono A-53 Gr B - central de vapor

Preços de tubulação – comparação diâmetros e espessuras

Kg/m linearPreço

R$/kg (*)R$/ml

(**)%

espessura

% diâmetro (2--2 1/2 e 2 -

-> 3")

Tensão max adm a

T=200oC A-53 Gr A(***)

Tensão max adm a

T=200oC A-53 Gr B($)

Tubo de 2" sch 40 5,43 4,75 25,79 100,0 840 1050Tubo de 2" sch 80 7,47 4,75 35,48 137,6 840 1050Tubo de 2" sch 160 11,1 4,75 52,73 204,4 840 1050Tubo de 2 1/2" sch 40 8,63 4,75 40,99 100,0 158,93 840 1050Tubo de 2 1/2" sch 80 11,41 4,75 54,20 132,2 152,74 840 1050Tubo de 2 1/2" sch 160 14,92 4,75 70,87 172,9 134,41 840 1050Tubo de 3" sch 40 11,28 4,75 53,58 100,0 207,73 840 1050Tubo de 3" sch 80 15,25 4,75 72,44 135,2 204,15 840 1050Tubo de 3" sch 160 27,65 4,75 131,34 245,1 249,10 840 1050

Page 5: Aula 04 Tubulações Alunos

Q constante Diâm ΔP Potência da Bomba Custo Bomba+ Custo tubulação= Custo Total ???

Método do custo anual mínimo

Page 6: Aula 04 Tubulações Alunos

Diâmetro econômico de tubulações para líquidos

171,0

0274,0342,0

486,0

.627,0

=

pipe

equip

CCWD µ

ρ

W = vazão mássica, 1000 .lbm/h ρ = densidade , lbm/ft³ µ = viscosidade, ft/s Cequip = custo do equipamento, $/bhp Cpipe= custo da tubulação, $/ft D = diâmetro (pol)

Kent, 1978

Método do custo anual mínimo

Page 7: Aula 04 Tubulações Alunos

Diâmetro ótimo – Segundo Nolte (*) – Cap 12.1 - pg 253 Fez um estudo com tubo médio de 6” , comprimento de 28,35 m com 1,6 valvulas , 10 curvas,2 Tês,6 flanges e 32 soldas e chegou a seguinte equação para o diâmetro econômico: 𝐷𝐷𝑜𝑜𝑜𝑜 = 𝑤𝑤0,479∗ 𝜇𝜇0,027

𝜌𝜌0,337 * 1,92507∗ 10−5 ∗𝐻𝐻 ∗𝐾𝐾𝜃𝜃𝑡𝑡+𝑘𝑘𝑡𝑡 ∗ 1+𝐹𝐹 ∗𝑋𝑋2 ∗η

0,169

Onde : H = número de horas por ano = 7880 h (operação normal) K = custo da energia eletrica (kWh) – Nos EUA - US$ 0,05/kWh θt = taxa de amortização (1/ tempo de amortização em anos) – 7 anos - 0,143 Kt = fração do custo inicial correspondente a manutenção anual – 0,01= 1% F = fator de custo das valvulas , conexões, soldas , suportes , instalação , relativas ao custo do tubo 6,75 η = eficiência das bombas e do motor – expressão em fração - 0,55 X2 = custo do tubo novo - US$5,28/m (dolar de 2004) w = massa mássica (kg/h) µ = viscosidade (mPa.s) ρ = massa especifica ( kg/m3) Se usada as informações acima a equação fica :

𝐷𝐷𝑜𝑜𝑜𝑜 = 0,3556 ∗𝑤𝑤0,479 ∗ 𝜇𝜇0,027

𝜌𝜌0,337

(*) Aplicações Práticas em Escoamento de Fluídos – Oscar Rotava - Editora LTC

Método do custo anual mínimo

Page 8: Aula 04 Tubulações Alunos

Critério das Velocidades recomendadas

Page 9: Aula 04 Tubulações Alunos

Velocidades recomendadas para água •Água líquida: 3 a 10 ft/s (1 a 3 m/s ) : Motivo: acima possibilidade de golpe de aríete

•Velocidades na sucção de bombas: 2 a 5 fts/s (0,6 a 1,5 m/s) Motivo: para evitar cavitação

•Tubulação para ciclos de aquecimento e refrigeração: máxima perda de pressão admitida de 4 ft/100 ft de tubo (1,2 m/s) Velocidades recomendadas para outros líquido Líquidos de média viscosidade: 1,5 a 3,5 m/s Líquidos de alta viscosidade: velocidade de 0,5 a 1,5 m/s

Page 10: Aula 04 Tubulações Alunos

Tabela de velocidades recomendadas pelo Livro do Silva Telles

Ludwig 1 a 2,4 20 1,2 20 1,8

Page 11: Aula 04 Tubulações Alunos

Segundo Ludwig, Edição 1976 Tabela 2.1 – pg 52 – existem outros fluidos Velocidades recomendadas: até 20kg/cm2 saturado - 20,3 a 30,48 m/s entre 20 e 10 kg/cm2 30,48 a 50,8 m/s acima de 10 kg/cm2 33 a 76,2 m/s

60

20 20 – 30 30 – 50 33 - 76

20

Page 12: Aula 04 Tubulações Alunos

Tabela Livro 2.1 –Ludwig

Page 13: Aula 04 Tubulações Alunos

Critério da Velocidade Recomendada Máxima Velocidade para vapores

10 50 100 450 800 1500 355018 73 40 29 17 14 12 1029 56 30 23 14 12 10 844 48 26 19 11 9 7 6100 34 18 13 8 7 6200 27 15 11 6 5 4400 23 13 9 6 5

Massa molar do vapor (kg/kmol)

Pressão (kPa)Máxima velocidade recomendada para vapores (m/s)

Page 14: Aula 04 Tubulações Alunos

Critério das ∆P recomendadas

Page 15: Aula 04 Tubulações Alunos

Critério da Perda de carga recomendada

Para atender critérios de segurança ou atender condição de menor custo em função de um comprimento unitário de tubulação.

Média Máxima Média MáximaSucção de bomba 1,2 6 6 12Descarga de Bombamédia pressõa 22,5 45 22,5 45alta pressão 68 90 68 90Escoamento por gravidade 3 33 As frações líquidas cujas temperaturas de escoamento estão a menos de 10oC do seu ponto de bolha devem ser consideradas líquidas saturadas .

Líquidos Saturados 3 Óleos leves, viscosos e águaPerdas de Pressão admissíveis (kPa/100m)

Ludwig (1964) recomenda valores para Perda de Carga (kPa/ 100m)

Sucção de bomba 11,5 - 28Descarga de Bomba 23 - 115Escoamento por gravidade - diâmetro 11/4 " a 2"

Ludwig recomenda sempre ↑velocidade e ↑∆P ↓D

Page 16: Aula 04 Tubulações Alunos

Zech (1986) recomenda os seguintes valores: (adotado) Para gases de processo: Linhas críticas (descarga de compressores , topo de coluna de destilação , linha limitada por baixo ∆P disponível ) 2 kPa /100 m ≤ ∆P/ 100m ≤ 6 kPa/100m

Linhas normais 10 kPa /100 m ≤ ∆P/ 100m ≤ 30 kPa/100m Para Líquidos: Sucção de bombas ou escoamento por gravidade. 5 kPa /100 m ≤ ∆P/ 100m ≤ 10 kPa/100m

Descarga de bombas ou linhas de alta pressão. 35 kPa /100 m ≤ ∆P/ 100m ≤ 50 kPa/100m

Fluído Média MáximaVapor à pressão atmosférica 5 11,5Vapor dágua-linhas principais 11,5 23- exausto 5 11,5-condensado 2,5 11,5

Perdas de Pressão admissíveis (kPa/100m)

Page 17: Aula 04 Tubulações Alunos

*PARH =

Raio hidráulico (Para dutos não circulares, ou concêntricos) :

Deq= 4. RH (ft) ou 48 RH , se em (pol)

A = área da seção transversal do duto P* = perímetro molhado da seção transversal

Diâmetro hidráulico

Definições:

Deq= 4. RH = 4.π R² / 2 π R = 2R

Para um tubo: nciaCircunferê

ÁreaRH =

Para um tubo:

Page 18: Aula 04 Tubulações Alunos

υρµµρ vDvDvD *

/***Re ===Número de Reynolds

(para tubos)

D: diâmetro interno do tubo ou diâmetro hidráulico v: velocidade média (média na área perpendicular ao escoamento) v = vazão volumétrica (Q)/área de seção transversal molhada (As µ = Viscosidade dinâmica ou absoluta (poise) υ = viscosidade cinemática (m²/s = Stoke)

Regime de Escoamento em dutos (tubos) (aproximados) Laminar: Re ≤ 2300 Turbulento ≥ 4000

Definindo regime de Escoamento

Page 19: Aula 04 Tubulações Alunos

Fluidos • Incompressíveis: líquidos e gases com baixo número de Mach (M<0,3)

A maior parte dos gases industriais estão em velocidades menores que 0,3M, portanto, sendo tratados como incompressíveis no cálculo da perda de carga

aplicação da equação de Bernoulli apenas para fluidos

incompressíveis • Compressíveis: gases com Mach >=0,3 M = v/c onde c = (k.R.T / M) ¹/² v: velocidade do gás TK K = (TK - 273,15) °C c: velocidade do som no gás = [1,80(TK - 273,15) + 32] °F k : cp/cv do gás = 1,80 TK °Rankine R: constante dos gases T: Temp absoluta (ºR ou K) M: massa molecular do gás

Page 20: Aula 04 Tubulações Alunos
Page 21: Aula 04 Tubulações Alunos

Exemplo de gas que pode ser tratado com fluido incompressível Ar a 85ºF (30oC)e 100 psig (7 kgf/cm2) fluindo através de um tubo de 4 in Sch 40 a 100 ft/s A equação de Bernoulli é válida para este caso? Dados: k = 1,4 M = 28,98 g/gmol R= 1544 ft lbf /lbmol ºR Calculando a velocidade do som: c = (k.R.T / M) ¹/² c = 1145 ft/s Calculando o número de Mach: M = v/c = 100 ft/s / 1145 ft/s Mach = 0,09 < 0,3 Portanto a equação de Bernoulli é válida para estas condições de escoamento O ar, nestas condições, pode ser modelado como um fluido incompressível.

Page 22: Aula 04 Tubulações Alunos

Movimentação de fluidos

depende de um delta de pressão: força motriz

Balaço de energia mecânica entre dois pontos fixos (1-2):

02

222

2

22

2

21

21

1

1

=++∆+∆

+∆

++++=+++

Hlwzgv

gP

lwhzg

vg

Phzg

vg

P

fcc

fTcc

Bcc

ρ

ρρ

A densidade é constante para fluidos incompressíveis Unidades de comprimento (m, ft) Lwf: perda de carga (pressão) devido ao atrito (ft) hB: head (elevação, altura) adicionado ao processo, bombas (ft) hT: head extraído do processo, turbinas (ft) H: head devido ao trabalho de eixo (bomba, turbina)

Page 23: Aula 04 Tubulações Alunos

calcfdispc

lwzgP )) =∆+

∆ρ

2 Casos – Descarga e sucção de bombas – com diâmetro constante

Linha de Descarga de Bomba ou para escoamento por diferença de nível

0=++∆+∆ HlwzgP

fcρ

Ou

Linha de Sucção de Bomba

calcfdispc

lwNPSHzgP )) =+∆+

∆ρ

Ou

Page 24: Aula 04 Tubulações Alunos

Perda de carga devido o atrito: Cálculo do lwf Depende de:

Vazão Diâmetro interno (base em velocidades recomendadas) Tipo de tubo (rugosidade) Comprimento do tubo (maiores perdas) Quantidade e tipos de acessórios e válvulas na linha

Métodos de cálculo do lwf: •Equação de Darcy Weisbach •Fórmula de Hazen Williams

cf glwP ⋅⋅=∆ ρ

Page 25: Aula 04 Tubulações Alunos

Métodos de cálculo do lwf:

1. Equação de Darcy Weisbach – Posso usar para liquidos ou gases

c

eqf g

vDL

flw2

.2

=

f: fator de atrito de Darcy (ou Moody) adimensional Leq: comprimento equivalente do tubo (ft ou m) (tubo reto + acessórios) D: diâmetro interno, ou hidráulico (ft ou m) v: velocidade média do fluido escoando pelo tubo (ft/s ou m/s) gc: constante gravitacional = 32,2 ft/s² (9,81 m/s²)

Métodos de cálculo mais comum de f: fator de darcy Diagrama de Moody. Há também várias correlações na literatura para prever o diagrama de Moody.

Re64

=fRegime laminar: Regime turbulento Moody

cf glwP ⋅⋅=∆ ρ

f

Page 26: Aula 04 Tubulações Alunos
Page 27: Aula 04 Tubulações Alunos
Page 28: Aula 04 Tubulações Alunos

Determinação da rugosidade relativa do tubo

Rugosidade - ε (mm)

Cobre, chumbo, bronze e alumínio 0,001 - 0,002Tubos plásticos e PVC 0,0015 - 0,007Resina epoxi, ester vinílica ou isoftálica 0,005

Aço inoxidável 0,015Aço carbono comercial 0,045 - 0,090Aço sem costura 0,015Aço soldado 0,046Aço galvanizado 0,15Aço enferrujado 0,15 - 4Ferro fundido novo 0,25 - 0,8Ferro fundido desgastado 0,8 - 1,5Ferro fundido com corrosão 1,5 - 2,5Cimento liso 0,3Concreto comum 0,3 - 1Concreto grosso 0,3 - 5Madeira aplainada 0,18 - 0,9Madeira comum 5

Material do tubo

Exemplo ; Tabela – rugosidade média aço carbono comercial - 0, 0675 para tubo de 2” rug relativa = 0,001

Page 29: Aula 04 Tubulações Alunos

Leq = L tubo reto + L eq acessórios (ft ou m)

Page 30: Aula 04 Tubulações Alunos
Page 31: Aula 04 Tubulações Alunos

Método de Cálculo do Lwf 2- Fórmula de Hazen Williams

Condições de aplicação: Para diâmetros acima de 2” Para água e óleos Fluidos com viscosidade cinemática próxima de 1,2.10-5 ft²/s (aprox 1,1 cP) Fluxo turbulento Temperaturas moderadas 87,4852,1

852,1

...DCQLC

lw eqff =

Cf: fator de conversão de unidade ( 4,72 inglesas, 10,67 SI) Leq: comprimento equivalente (ft ou m) Q: vazão volumétrica (ft³/s ou m³/s) C: fator de rugosidade (tabela proximo slide)

Para tubos de ferro severamente inscrustados = 40 Para tubos de aço novos = 130

D: diâmetro interno (ft ou m) Lwf - em ft ou em metros.

Page 32: Aula 04 Tubulações Alunos
Page 33: Aula 04 Tubulações Alunos

Exercício : Variáveis para decisão : 1. Escolher o maior valor possível de vazão Q 2. Menores valores possíveis de ∆Pdisponível 3. Líquido ou condição de temperatura que resulte nos

maiores valores de viscosidade e pressão de vapor Para uma tubulação ligada no recalque de uma bomba: P1 = pressão de descarga da bomba Lembrar que a perda de carga total nunca poderá ser superior a diferença de energia entre os pontos 1 - 2

Page 34: Aula 04 Tubulações Alunos

Exercício: vapor saturado a 100 psig, e a uma vazão de 8000 lbm/h Qual o diâmetro de um tubo de aço carbono 1- conversão de vazão mássica para volumétrica usando o volume específico, nas condições de pressão e temperatura do vapor (tabelas de vapor) = 3889 ft³/lbm Q = 8,64 ft³/s 2 - O range recomendado para vapor saturado acima de 50 psig (3,5 kgf/cm2) esta entre 66 a 98 ft/s (20 a 30 m/s). Usando um valor de 90 ft/s como chute inicial para procurar diâmetros comerciais. Dinterno: Q/velocidade recomendada = área da seção transversal do tubo = 0,088 ft² (81,75 cm2) 3 - Usando as tabelas de aço carbono, vemos que o diâmetro deve estar entre: 3 in sch 40: área de 0,051 ft² 4 in sch 40: área de 0,088 ft² 6 in sch 40: área de 0,2 ft2 4 -Usando os reais diâmetros internos de cada tubo, 4 in Sch 40 atende a velocidade recomendada , mas e a perda de carga?

Page 35: Aula 04 Tubulações Alunos

Considerações sobre o calculo do diâmetro: -Uma redução de 2% no diâmetro causa uma elevação de 10% na perda de carga . - Uma redução de 5% eleva em 23% a perda de carga. - Se a velocidade calculada estiver acima da velocidade recomendada, significa que o diâmetro escolhido está pequeno, o que irá causar grande perda de carga. Deve-se escolher então um diâmetro maior. O diâmetro escolhido deverá ser aquele que dê uma velocidade no limite inferior da faixa de velocidades recomendadas, ou imediatamente abaixo. Para o caso de materiais mais nobres (aços inoxidáveis) pode-se abrir mão da velocidade econômica para reduzir o custo da tubulação e aumentar o custo do bombeamento.

Quanto maior o diâmetro interno da tubulação: •Menores as perdas de carga por atrito •Diminui a geração de ruído •Fornece uma capacidade de aumento da produção

Page 36: Aula 04 Tubulações Alunos

Exercício – Apostila Prof Clélio – Cap 9 Sistema de descarga de bomba

Page 37: Aula 04 Tubulações Alunos
Page 38: Aula 04 Tubulações Alunos
Page 39: Aula 04 Tubulações Alunos

Exercício – Apostila Prof Clélio – Cap 9 Sistema de sucção de bomba

Page 40: Aula 04 Tubulações Alunos