apresentação sobre homomorfismo de grupos - aplicações - cubo de rubik

23
APLICAÇÕES DO HOMOMORFISMO CUBO DE RUBIK Professor Edinei Reis

Upload: edinei-reis

Post on 22-Apr-2015

7.843 views

Category:

Education


4 download

DESCRIPTION

 

TRANSCRIPT

Page 1: Apresentação sobre homomorfismo de grupos - Aplicações - Cubo de Rubik

APLICAÇÕES DO HOMOMORFISMO CUBO DE RUBIK

Professor Edinei Reis

Page 2: Apresentação sobre homomorfismo de grupos - Aplicações - Cubo de Rubik

Problema – Resolver o Cubo de Rubik ou Cubo Mágico

Podemos utilizar a teoria dos grupos para resolver o Cubo de Rubik.

Page 3: Apresentação sobre homomorfismo de grupos - Aplicações - Cubo de Rubik

Notação de Singmaster A cada face é

atribuída uma letra que a identifica.

U – Up F - Front R - Right D - Down B - Back L - Left

Page 4: Apresentação sobre homomorfismo de grupos - Aplicações - Cubo de Rubik

Movimentos do Cubo K representa a rotação de 90º da face K

no sentido dos ponteiros do relógio.

K-1 a rotação da face K de 90º no sentido contrário ao dos ponteiros do relógio

Rotação R

Page 5: Apresentação sobre homomorfismo de grupos - Aplicações - Cubo de Rubik

Rotações do Cubo São permutações do conjunto dos “cubinhos”.

Executar rotações sucessivamente corresponde a compor essas permutações.

RU-1 e U-1R não correspondem ao mesmo rearranjo do cubo, já que a composição de funções não é, em geral, comutativa.

Page 6: Apresentação sobre homomorfismo de grupos - Aplicações - Cubo de Rubik

Rotações do Cubo

RU-1: R => U-1 =>

U-1R: U-1 => R =>

Permutação é uma bijeção, de um conjunto finito nele mesmo.

Page 7: Apresentação sobre homomorfismo de grupos - Aplicações - Cubo de Rubik

Permutações

O conjunto de todas as permutações das facetas do Cubo de Rubik é um grupo, bem grande e complexo (mas não é infinito).

O conjunto de todas as permutações das facetas do Cubo de Rubik forma um grupo R chamado Grupo de Rubik.

Page 8: Apresentação sobre homomorfismo de grupos - Aplicações - Cubo de Rubik

Permutações – Ciclos

Um ciclo pode ser pensado como uma série de transições de estado que acaba por retornar ao estado inicial.

S1 -> S2 -> ... -> Sn -> S1

Aplicação de ciclos no cubo

Macro S = L2F2 => Software Rubik

Page 9: Apresentação sobre homomorfismo de grupos - Aplicações - Cubo de Rubik

Curiosidade O tamanho deste grupo R é de 4 x 1019

elementos. E existe uma afirmação interessante antes de ser conhecido este número:

“A Companhia de Brinquedos Ideal afirmava na caixa do Cubo Mágico original que ele poderia atingir mais de três bilhões de possíveis configurações. Isto é o mesmo que o McDonald’s orgulhosamente anunciar que eles já venderam mais de 120 hamburgers”.

J. A. Paulos, Innumeracy

Page 10: Apresentação sobre homomorfismo de grupos - Aplicações - Cubo de Rubik

O grupo Zn

O conjunto Zn = {0, 1, ... , n-1} forma um grupo comutativo se definirmos a operação +, ou seja, a + b.

Zn é um grupo cíclico. Temos, por exemplo, Z6 = {0, 1, 2, 3, 4, 5}, que é um grupo cíclico finito.

Page 11: Apresentação sobre homomorfismo de grupos - Aplicações - Cubo de Rubik

O grupo Z6

No grupo Z6 = {0, 1, 2, 3, 4, 5} vale a seguinte propriedade:

175252

Page 12: Apresentação sobre homomorfismo de grupos - Aplicações - Cubo de Rubik

Homomorfismo de Grupos

Uma função y: G H é um homomorfismo de grupos se y(1) = 1 e para todo g, h G, y(g h) = y(g) y(h).

Vimos também que se y é bijetora (isto é injetora e sobrejetora), dizemos que y é uma isomorfismo () de grupos.

Page 13: Apresentação sobre homomorfismo de grupos - Aplicações - Cubo de Rubik

Homomorfismo no Cubo de Rubik

Seja a função y: Z6 R definida por y(k) = (FFLL)k é um homomorfismo injetor de grupos.

Sua imagem é o subgrupo H = F2L2. Portanto H Z6.

Page 14: Apresentação sobre homomorfismo de grupos - Aplicações - Cubo de Rubik

Homomorfismo no Cubo de Rubik Ao aplicarmos a macro y(k) = (FFLL)k,

observamos que o Grupo de Rubik com k = 6 é homomorfo a Z6.

Ou seja, se executarmos a macro FFLL ou F2L2 seis vezes, o cubo volta ao seu estado original.

As macros F2U2, D2R2, L2B2 são similares à função y(k) = (FFLL)k, também com k = 6.

Page 15: Apresentação sobre homomorfismo de grupos - Aplicações - Cubo de Rubik

Homomorfismo no cubo de Rubik

As macros L2R2B2L2D2R2 e

R-1UR-1BRU-1R-1LU-1L-1UB-1RR também com k = 6, volta o cubo ao seu estado original.

Podemos utilizar o software RUBIK para fazer as iterações e descobrir a ordem de uma macro.

Page 16: Apresentação sobre homomorfismo de grupos - Aplicações - Cubo de Rubik

Homomorfismo no cubo de Rubik

Por exemplo, a macro F tem ordem 4 e, a macro B2F2R2 também tem ordem 4, ou seja, o grupo de Rubik com a função y(k) = (F) ou g(k) = (B2F2R2) com k = 4 é homomorfo a Z4.

Page 17: Apresentação sobre homomorfismo de grupos - Aplicações - Cubo de Rubik

Outra aplicação dos homomorfismos de grupos no cubo de Rubik Grupo das Fatias F:

Page 18: Apresentação sobre homomorfismo de grupos - Aplicações - Cubo de Rubik

Grupo das Fatias F: O grupo das fatias F é o subgrupo de R

gerado pelos movimentos F*, D* e R*, ou seja:

F = F*; D*; R*

Page 19: Apresentação sobre homomorfismo de grupos - Aplicações - Cubo de Rubik

Possíveis Generalizações Podem considerar-se os outros sólidos

platônicos (sólidos convexos cujas faces planares são polígonos regulares com o mesmo número de arestas e tais que cada vértice é vértice do mesmo número de faces).

Os movimentos acima considerados para resolver o cubo, quase não precisam de mudanças para resolver problemas análogos com os sólidos platônicos [Turner, E. e Gold, K., Rubik's groups Am. Math. (1985)]

Page 20: Apresentação sobre homomorfismo de grupos - Aplicações - Cubo de Rubik
Page 21: Apresentação sobre homomorfismo de grupos - Aplicações - Cubo de Rubik
Page 22: Apresentação sobre homomorfismo de grupos - Aplicações - Cubo de Rubik
Page 23: Apresentação sobre homomorfismo de grupos - Aplicações - Cubo de Rubik

Referências SCHÜTZER, Waldeck. Aprendendo Álgebra com o Cubo

Mágico. Uberlândia, 2005. V Semana de Matemática da UFU. Disponível em <http://www.dm.ufscar.br/˜waldeck>. Acesso em 05 nov. 2008.

DELGADO, Manuel. Seminário sobre o cubo de Rubik. Portugal. Disponível em <http://www.fc.up.pt/cmup/mdelgado/cubo/seminario>. Acesso em 05 nov. 2008.

Imagens

http://www.cuboloco.com

Aplicações do Homomorfismo - Cubo de Rubik by Edinei Reis is licensed under a Creative Commons Atribuição-Uso Não-Comercial-Compartilhamento pela mesma Licença 2.5 Brasil License. Based on a

work at www.edineireis.com.