abordagem de risco e perigosidade experiência · iniciativa riscos ciclo de encontros: ......

60
Abordagem de Risco e Perigosidade – Experiência de projeto Europeu “ESPON- HAZARDS” Maria João Batista, LNEG CICLO DE ENCONTROS CIENTÍFICOS A Ciência na Prevenção e Mitigação dos Riscos em Portugal RISCOS TECNOLÓGICOS Fundação Calouste Gulbenkian

Upload: trinhtram

Post on 14-Dec-2018

216 views

Category:

Documents


0 download

TRANSCRIPT

Abordagem de Risco e Perigosidade – Experiência

de projeto Europeu “ESPON-HAZARDS”

Maria João Batista, LNEG

CICLO DE ENCONTROS CIENTÍFICOS A Ciência na Prevenção e Mitigação dos Riscos em Portugal RISCOS TECNOLÓGICOS Fundação Calouste Gulbenkian

Iniciativa Riscos Ciclo de Encontros: RISCOS TECNOLÓGICOS Fundação Calouste Gulbenkian, 23-05-2013

Project 1.3.1 (2004-2006)

The spatial effects and management of natural and technological hazards in general and in relation to

climate change

Consórcio:

Institute of Spatial Planning (IRPUD), Germany Center for Urban and Regional Studies/Helsinki University of Technology (CURS/HUT), Finland Institute of Ecological and Regional Development (IOER), Germany Swedish Meteorological and Hydrological institute (SMHI), Sweden Comissão de Coordenação e Desenvolvimento Regional do Centro (CCDRC), Portugal Instituto Nacional de Engenharia, Tecnologia e Inovação, I.P. (INETI), Portugal

Iniciativa Riscos Ciclo de Encontros: RISCOS TECNOLÓGICOS Fundação Calouste Gulbenkian, 23-05-2013

Objectivo: Definição de tipologias de riscos naturais e tecnológicos na Europa e em algumas regiões. Definição do perfil de risco das regiões

NUTS III na Europa

Naturais •Avalanches

•Seca Potencial

•Sismos

•Temperaturas extremas

•Cheias

•Fogos florestais

•Deslizamentos

•Tempestades

•Tempestades com oscilação do nível do mar na costa(Storm surges)

•Tsunamis

•Actividade vulcânica

Tecnológicos •Tráfego aéreo •Perigo de acidente industrial (industria química) •Perigo de acidente em central nuclear •Transporte, manuseamento e armazenamento de petróleo

Indicadores de Vulnerabilidade

Metodologia:

Perigosidade

Iniciativa Riscos Ciclo de Encontros: RISCOS TECNOLÓGICOS Fundação Calouste Gulbenkian, 23-05-2013

Metodologia:

Método Delphi

Risco=Perigosidade potencial x vulnerabilidade

“Peso” dos riscos dado por grupos de especialistas usado para definição do perfil de risco da região

Iniciativa Riscos Ciclo de Encontros: RISCOS TECNOLÓGICOS Fundação Calouste Gulbenkian, 23-05-2013

Introduction

• The Central Region of Portugal:

– 25.7% of the Portuguese land area

– 78 municipalities

– almost 1.8 million inhabitants (17.2% of the national total )

– 10 NUTs III level areas

ESPON HAZARDS

Natural and technological hazards in the planning of Centre region

ESPON HAZARDS

Natural and

technological hazards

spatial

relevance

Natural hazards

Floods

+

Landslides/ avalanches

Rock collapses

Landslides

0

0

Earthquakes

0

Droughts

+

Forest fires spacialy in Pinhal Interior Nut III

(Inland region)

+

Storms

wind storms

+

Extreme precipitation (heavy rainfall and hail)

+

Extreme temperatures (heat waves)

0

Technological Hazards

Hazards from nuclear power plants

0

Hazards from hazardous storage of nuclear waste

Old uranium mines

+

dam failure

+

Hazards from other sources

0

Hazards from hazardous waste deposits

Uranium contamination hazard

ESPON HAZARDS

Methodology development

Driving forces

Number of mines/NUTSIII

Pressure State

Number of water systems/NUTSIII

Impact Response

DPSIR

Population density (50%) GDP(50%)

Degree of Vulnerability

ESPON HAZARDS

Intensity of Hazard table NUTSIII

Nºwater_systm/NUTSIII

(impacto)

class_NºSist/NUTSIII

Nºminas/NUTSIII

(pressão) class_minas/NUTSIII

Sum

Intensity

of Hazard

BEIRA INTERIOR NORTE

176

IV

209

V

9

V

PINHAL LITORAL

30

II

0

I

3

II

PINHAL

INTERIOR SUL

185

IV

0

I

5

III

BEIRA INTERIOR

SUL

57

II

2

I

3

II

COVA DA BEIRA

63

III

24

IV

7

IV

SERRA DA ESTRELA

57

II

36

IV

6

III

DÃO LAFÕES

190

IV

76

V

9

V

PINHAL

INTERIOR NORTE

225

V

27

IV

9

V

BAIXO MONDEGO

36

II

2

I

3

II

BAIXO VOUGA

59

II

1

I

3

II

ESPON HAZARDS

ESPON HAZARDS

Damage Potential

ESPON HAZARDS

Coping capacity

Aggregated risk map for Nuts III

ESPON HAZARDS

Further detail methodology development

ESPON HAZARDS – Coimbra meeting

Methodology applied to data

available of regional vulnerability

indicators Damage potential

Coping capacity

NUTS IV

Damage potential - NUTS IV

ESPON HAZARDS – Coimbra meeting

Coping capacity - NUTS IV

ESPON HAZARDS

ESPON HAZARDS

Águeda (Ag), Albergaria-a-Velha (AV), Anadia (An), Aveiro (Av), Estarreja (Es), Ílhavo (Il), Mealhada (Mea), Murtosa (Mur), Oliveira do Bairro (OB), Ovar

(O), Sever do Vouga (SV), Vagos (Vg), Cantanhede (Can), Coimbra (Coi), Condeixa-a-Nova (CN), Figueira da Foz (FF), Mira (Mi), Montemor-o-Velho

(MV), Penacova (Pen), Soure (Sou), Batalha (B), Leiria (Lei), Marinha Grande (MG), Pombal (Pb), Porto de Mós (PM), Alvaiázere (Az), Ansião (Ans),

Arganil (Arg), Castanheira de Pêra (CP), Figueiró dos Vinhos (FV), Góis (G), Lousã (Lou), Miranda do Corvo (MC), Oliveira do Hospital (OH), Pampilhosa

da Serra (PS), Pedrogão Grande (PG), Penela (Pen), Tábua (T), Vila Nova de Poiares (VNP), Aguiar da Beira (AB), Carregal do Sal (CS), Castro Daire

(CD), Mangualde (Mag), Mortágua (Mor), Nelas (N), Oliveira de Frades (OF), Penalva do Castela (PC), Santa Comba Dão (SCD), São Pedro do Sul

(SPS), Sátão (Sa), Tondela (Ton), Vila Nova de Paiva (VNPa), Viseu (Vis), Vouzela (Vz), Mação (Mac), Oleiros (Ol), Proença-a-Nova (PN), Sertã (Ser),

Vila de Rei (VR), Fornos de Algodres (FA), Gouveia (Gou), Seia (S), Almeida (Alm), Celorico da Beira (CB), Figueira de Castelo Rodrigo (FCR), Guarda

(Gua), Manteigas (Man), Meda (Med), Pinhel (Pi), Sabugal (Sb), Trancoso (Tra), Castelo Branco (CaB), Idanha-a-Nova (IN), Penamacor (Pnm), Vila

Velha de Rodão (VVR), Belmonte (Bel), Covilhã (Cov), Fundão (Fun)

Aggr.

Hazard potential

Degree of vulnerability

I II III IV V

I 2 3 4 5 6

II

3 AV, Av, Es, Il, Mea, Mur, OB, O,

SV, Vg Coi, CN, Mi, MV, B, MG,

PM, Az, Ans, CP, Lou, MC, VNP,

AB, CS, Mag, N, OF, SCD, SPS,

VNPa, FA, Alm, Gou, FCR,

Gua, Med, Pin,

4 Ag, An, Can, FF,Pen, Lei,

Sou, Arg, FV, G, OH, PG,

Pen, T, CD, Mor, PC, Sa,

Ton, Vis, Vz, VR, S, CB,

Man, Sb, Tra, VVR, Bel,

Cov,

5 Pb PS, Mac, PN,

Ser, CaB, Pnm,

Fun

6 Ol, IN,

7

III 4 5 6 7 8

IV 5 6 7 8 9

V 6 7 8 9 10

Hazards Vulnerability Table

Aggregated risk map for Nuts IV

ESPON HAZARDS

ESPON HAZARDS

Further detail development of the methodology

Advanced Research Workshop

Uranium Mines

• The Central Region of Portugal has:

– a large quantity of U mineral occurrences identified (465)

– a large quantity of abandoned U mine sites (60)

• About 75% open pits

• About 25% underground mining operations

Using Municipality unit

Hazard Potential + Vulnerability

Hazard Potential

Risk

Hazard Potential Vulnerability Number of mines per municipality

Water systems per municipality

Inhabitants per water system

Methodology

Vol. Waste + type exploration + leaching + acid water

Hazard Map Number of water systems per

municipality

Calculation

Class

PF

<10

10 –30

>30

1

2

3

Mu

ltiplicatio

n facto

r of 1

PF-ponderation factor

Hazard Map Number of mineral occurrences per

municipality

Calculation

Class

PF

<10

10 – 30

>30

1

2

3

Mu

ltiplicatio

n facto

r of 1

PF-ponderation factor

Hazard Map Number inhabitants per water system

per municipality

Calculation

Class

PF

<5000

5000 – 20000

>20000

1

2

3

Mu

ltiplicatio

n facto

r of 1

PF-ponderation factor

Hazard Map Volume of waste + mine type + leaching

+ acid water per municipality

Calculation

Class

PF

Low volume of

waste+underground

mine+no leaching+no acid water

Medium

High volume

of waste+open

pit+leaching+acid water

1

2

3

Mu

ltiplicatio

n facto

r of 1

PF-ponderation factor

Vulnerability

Methodology

Regional Vulnerability

Damage potential

indicators

Coping capacity

indicators

Regional GDP/ capita National GDP/ capita

Population density Nºdoctors/1000 inhab

Risk

Hazard Potential Vulnerability

Economic and Social indicators

Population density per municipality

Calculation

Class

PF

1

2

3

Mu

ltiplicatio

n facto

r of 1

<25 25-100 >100

PF-ponderation factor

Regional GDP per capita per municipality

Calculation

Class

PF

1

2

3

Mu

ltiplicatio

n facto

r of 1

<25 25-100 >100

PF-ponderation factor

National GDP per capita per municipality

Calculation

Class

PF

1

2

3

Mu

ltiplicatio

n facto

r of 1

<25 25-100 >100

PF-ponderation factor

Doctors per 1000 inhabitants per

municipality

Calculation

Class

PF

1

2

3

Mu

ltiplicatio

n facto

r of 1

>4 2-4 <2

PF-ponderation factor

Vulnerability Map

Legend

0

1

2

3

No data

1 2 3

Population density+ GDP/capita+ Doctors per 1000 inhabitants + National GDP/ capita

Data unit - muniicipality

Hazard Potential +

Vulnerability

Risk Map

Legend

0

1

2

3

No data

1 2 3

Hazard potential + Vulnerability = Risk map of Uranium contamination

Data unit - muniicipality

Conclusions • Higher risk municipalities have

open pit uranium mines with acid

mine drainage, high volumes of

waste materials and medium

population density, GDP/capita and

less doctors per 1000 inhabitants.

• These municipalities are Gouveia,

Guarda, Mangualde.

ESPON HAZARDS

Further detail development of the methodology

Hazard Maps

(unit classification 100x100m)

Methodology

Risk

Hazard Potential Vulnerability Land use

Lithology

Distance of U mines to land use categories

Geoaccumulation index indicator

Natural Gamma Ray

Water systems per municipality

Inhabitants per water system

Volume of waste / U exploration

The Centre Iberian autochthon outcrops are mainly from the Supergrupo Dúrico Beirão made by a thick sequence of turbidites, deposited in a talus environment on late Neoproterozoic to Cambrian ages. The Supergrupo Dúrico-Beirão is made by a metamorphosed sequence of pelites, phylites, conglomerates, quartzites, among others, which lies unconformebly

on the Pre-Cambrian subtract. From

Devonian to Permian ages, the Variscan orogeny was responsible for the NW-SE folding on the Supergrupo Dúrico-Beirão, and for the ductile shears and regional metamorphism that reached the green schist facies.

The Centre Iberian granites were implanted along the directions of the ductile shears of the Variscan last deformation phase, originating an intense contact metamorphism.

ESPON HAZARDS

Lithology

Natural Gamma Ray exposure rate

Land cover

(SIORMINP-MINERAL OCCURRENCES DATABASE)

Distance from U mineralizations

U Geoaccumulation index in stream sediments

IIgeo= log 2 [Cn / 1,5 x Bn ]

Cn= chemical element concentration n in fine-grained

sediments

Bn= geochemical background from clay fraction

sediments (average value in clays); the 1,5 factor was

calculated by the authors to prevent lithological changes in

the background values.

Igeo(class)

Geoacumulation Index

Pollution degree

6

>5

Very Strong Pollution

5

>4-5

Strong to Very Strong Pollution

4

>3-4

Strong Pollution

3

>2-3

Moderate to Strong Pollution

2

>1-2

Moderate Pollution

1

>0-1

Weak to Moderate Pollution

0

<0

Absent to Weak Pollution

Uranium Geoaccumulation Index

0-1

2

5

1

2

3

Mu

ltiplicatio

n facto

r of 1

Hazard Map Calculation

Class

PF

PF-ponderation factor

Hazard Map Distance of uranium mines to land use

categories

Calculation

Class

PF

(Land use categories X 10000)/Distance to uranium mines

0 - 20

20 – 40

40 - 60

1

2

3

Mu

ltiplicatio

n facto

r of 1

PF-ponderation factor

inhabitants / water system / municipality

104-5145

5145-30351

30351-70681

1

2

3

Mu

ltiplicatio

n facto

r of 1

Hazard Map

Calculation

Class

PF

PF-ponderation factor

Water system / municipality

1-10

10-20

20-76

1

2

3

Mu

ltiplicatio

n facto

r of 1

Hazard Map

Calculation

Class

PF

PF-ponderation factor

Lithology

1-

limestones 2-

sandstones shales and quartzites 3-granitic

rocks

1

2

3

Mu

ltiplicatio

n facto

r of 1

Hazard Map

Calculation

Class

PF

PF-ponderation factor

Natural Gamma Ray

m-1s e m-2s m e m+1s

m+2s e m+3s)

1

2

3

Mu

ltiplicatio

n facto

r of 1

Hazard Map

Calculation

Class

PF

PF-ponderation factor

Type of U ore waste Class Type mine

Clas

s Leaching Class

Acid

water Class

waste rock < or = 20000 (tons) 1 open pit 2 Yes 5 Yes 5

waste rock > 20000 (tons) 2 underground 1 No 1 No 1

waste rock > 1000000 (tons) 3 Both works 2

poor ore < or = 2000 (tons) 3

poor ore > 2000 (tons) 4

poor ore > 1000000 (tons) 5

rejected from treat < or = 2000

(tons) 3

rejected from treat > 2000 (tons) 4

rejected from treat >1000000

(tons) 5

Type of mines classification

Classification of exploited mines

Low volume of

waste+underground

mine+no leaching+no acid water

Medium

High volume

of waste+open

pit+leaching+acid water

1

2

3

Mu

ltiplicatio

n facto

r of 1

Hazard Map

Calculation

Class

PF

PF-ponderation factor

Combined Hazard Potential

• Lithology + Gamma Ray Exposure

• Distance from uranium mines to land use categories +

U Geoaccumulation Index in stream sediments

• Number of water systems per municipality + Inhabitants per water system.

Combined Hazard Potential

Conclusions

• Gamma ray exposure rate was an important indicator.

• Further development will include vulnerability indicators.

• Previously used vulnerability indicators were not possible to use due to the reduction in the unit from the NUTS unity to the pixel (100x100m).