20122611 fuchs pessentheiner geophysicalunsupervisedsignalprocessing

Upload: hexinfx

Post on 02-Apr-2018

214 views

Category:

Documents


0 download

TRANSCRIPT

  • 7/27/2019 20122611 Fuchs Pessentheiner GeophysicalUnsupervisedSignalProcessing

    1/50

  • 7/27/2019 20122611 Fuchs Pessentheiner GeophysicalUnsupervisedSignalProcessing

    2/50

    SPSC - Geophysical Unsupervised Signal Processing

    Outline

    IntroductionModel Description and AssumptionsSummary

    Approaches for Unsupervised ProcessingWiener Filter and Unsupervised ProcessingPredictive DeconvolutionBlind Source SeparationICA-Based Seismic Deconvolution

    ResultsSummary

    Degenerate Unmixing Estimation Technique DUET

    Fuchs Anna & Pessentheiner Hannes Advanced Signal Processing 2 page 2/50

    http://find/
  • 7/27/2019 20122611 Fuchs Pessentheiner GeophysicalUnsupervisedSignalProcessing

    3/50

    SPSC - Geophysical Unsupervised Signal Processing

    Reflection Seismic

    Fuchs Anna & Pessentheiner Hannes Advanced Signal Processing 2 page 3/50

    http://find/http://goback/
  • 7/27/2019 20122611 Fuchs Pessentheiner GeophysicalUnsupervisedSignalProcessing

    4/50

    SPSC - Geophysical Unsupervised Signal Processing

    Reflectivity Function

    Earth response to an ideal impulsive, seismic source

    Fuchs Anna & Pessentheiner Hannes Advanced Signal Processing 2 page 4/50

    http://find/
  • 7/27/2019 20122611 Fuchs Pessentheiner GeophysicalUnsupervisedSignalProcessing

    5/50

    SPSC - Geophysical Unsupervised Signal Processing

    How?

    Information on the subsurface of an area under analysis Produce seismic waves (dynamite, air-guns,...)

    Reflection on subsurface

    Sensor grids located in the surface measure reflections

    Why?

    Exploration and monitoring of hydrocarbon reservoirs

    Assessing sites for CO2 sequestration

    Nuclear waste deposition

    Information about structure of earth

    Fuchs Anna & Pessentheiner Hannes Advanced Signal Processing 2 page 5/50

    http://find/
  • 7/27/2019 20122611 Fuchs Pessentheiner GeophysicalUnsupervisedSignalProcessing

    6/50

  • 7/27/2019 20122611 Fuchs Pessentheiner GeophysicalUnsupervisedSignalProcessing

    7/50

    SPSC - Geophysical Unsupervised Signal Processing

    Problems:

    Seismic source and subsurface propagation not ideal Output is mixture of different waves which must be identified

    and separated

    Hypothesis: Linear distortion and mixtures

    Convolution relationship source signal and propagationenvironment are not ideal

    Mixing linear combination

    Fuchs Anna & Pessentheiner Hannes Advanced Signal Processing 2 page 7/50

    http://find/
  • 7/27/2019 20122611 Fuchs Pessentheiner GeophysicalUnsupervisedSignalProcessing

    8/50

    SPSC - Geophysical Unsupervised Signal Processing

    Summary

    Geophysical applications include Estimation of different sources Estimation of reflectivity function

    Problems due to the not ideal environment conditions

    Prior assumption of model to be able to use known algorithms

    Fuchs Anna & Pessentheiner Hannes Advanced Signal Processing 2 page 8/50

    http://find/
  • 7/27/2019 20122611 Fuchs Pessentheiner GeophysicalUnsupervisedSignalProcessing

    9/50

    SPSC - Geophysical Unsupervised Signal Processing

    Approaches for Unsupervised Processing [1]

    Wiener Filter and Unsupervised Processing

    Geophysical SP - prominent role to develop unsupervisedmethods

    Wieners theory to seismology (Enders A. Robinson 1954 [2])

    SOS HOS

    Blind Deconvolution

    Unsupervised Processing

    Blind Source Separation

    Fuchs Anna & Pessentheiner Hannes Advanced Signal Processing 2 page 9/50

    http://find/http://goback/
  • 7/27/2019 20122611 Fuchs Pessentheiner GeophysicalUnsupervisedSignalProcessing

    10/50

    SPSC - Geophysical Unsupervised Signal Processing

    Question

    Additional information to the measured data about inputsources and the convolution/mixing system

    If one of them is known supervised methods

    Assumption No additional information available

    Fuchs Anna & Pessentheiner Hannes Advanced Signal Processing 2 page 10/50

    http://find/
  • 7/27/2019 20122611 Fuchs Pessentheiner GeophysicalUnsupervisedSignalProcessing

    11/50

    SPSC - Geophysical Unsupervised Signal Processing

    Source Signature known

    Deterministic supervised deconvolution in seismology e.g. estimate reflectivity function through linear filtering,

    using the Wiener-Levinson minimization of the MSE

    Source Signature unknown Unsupervised task

    Exploiting prior knowledge about structure of source signatureand the reflectivity

    Fuchs Anna & Pessentheiner Hannes Advanced Signal Processing 2 page 11/50

    http://find/
  • 7/27/2019 20122611 Fuchs Pessentheiner GeophysicalUnsupervisedSignalProcessing

    12/50

    SPSC - Geophysical Unsupervised Signal Processing

    Task

    Get reflectivity function from measured data usingdeconvolution

    Predictive Deconvolution

    Wiener theory on prediction and filtering could be used forpredictive, unsupervised deconvolution [2]

    Two Hypothesis

    1. The seismic wavelet is the impulse response of an all-pole,minimum phase system.

    2. The impulse response of the layered earth model behaves likea decorrelated (white) signal, so that it has a flat frequencyspectrum.

    Fuchs Anna & Pessentheiner Hannes Advanced Signal Processing 2 page 12/50

    http://find/
  • 7/27/2019 20122611 Fuchs Pessentheiner GeophysicalUnsupervisedSignalProcessing

    13/50

    SPSC - Geophysical Unsupervised Signal Processing

    Predictive Deconvolution

    Deconvolution using prediction-error filter uses only SOS simplification of task BUT

    Prediction-error filter acts as a whitening filter ideallyrecovers uncorrelated signals

    Problem if seismic wavelet cannot be modeled as an all-pole,minimum phase filter

    Fuchs Anna & Pessentheiner Hannes Advanced Signal Processing 2 page 13/50

    http://find/
  • 7/27/2019 20122611 Fuchs Pessentheiner GeophysicalUnsupervisedSignalProcessing

    14/50

    SPSC - Geophysical Unsupervised Signal Processing

    Limitation of linear predictive deconvolution

    Next step from SOS to HOS

    Fuchs Anna & Pessentheiner Hannes Advanced Signal Processing 2 page 14/50

    http://goforward/http://find/
  • 7/27/2019 20122611 Fuchs Pessentheiner GeophysicalUnsupervisedSignalProcessing

    15/50

    SPSC - Geophysical Unsupervised Signal Processing

    Blind Source Separation

    Fuchs Anna & Pessentheiner Hannes Advanced Signal Processing 2 page 15/50

    S SC G S

    http://find/http://goback/
  • 7/27/2019 20122611 Fuchs Pessentheiner GeophysicalUnsupervisedSignalProcessing

    16/50

    SPSC - Geophysical Unsupervised Signal Processing

    Blind Source Separation

    Unknown

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    Source Signals Mixing Matrix AObservedSignals

    s1s1

    s2s2

    s3

    s3

    sm

    x1

    x2

    xm

    a11

    a12

    a1m

    a21

    a22

    a2m

    an1

    an2

    amm

    . . .

    . . .

    . . .

    x(n) = [x1(n) x2(n) ... xM(n)]

    T

    s(n) = [s1(n) s2(n) ... sN(n)]T

    x = As

    s = W

    x with W = A1

    Fuchs Anna & Pessentheiner Hannes Advanced Signal Processing 2 page 16/50

    SPSC G h i l U i d Si l P i

    http://find/
  • 7/27/2019 20122611 Fuchs Pessentheiner GeophysicalUnsupervisedSignalProcessing

    17/50

    SPSC - Geophysical Unsupervised Signal Processing

    Goal: Estimate all source signals

    W can recover sources if mixing system is linear, memory-lessand time-invariant

    SOS: W is adjusted so as to decorrelate the recovered signalss (using PCA)

    HOS: W is adjusted so that recovered signals becomemutually independent

    Fuchs Anna & Pessentheiner Hannes Advanced Signal Processing 2 page 17/50

    SPSC G h si l U s is d Si l P ssi

    http://find/
  • 7/27/2019 20122611 Fuchs Pessentheiner GeophysicalUnsupervisedSignalProcessing

    18/50

    SPSC - Geophysical Unsupervised Signal Processing

    Blind Source Separation using SOS and HOS

    Fuchs Anna & Pessentheiner Hannes Advanced Signal Processing 2 page 18/50

    SPSC Geophysical Unsupervised Signal Processing

    http://find/
  • 7/27/2019 20122611 Fuchs Pessentheiner GeophysicalUnsupervisedSignalProcessing

    19/50

    SPSC - Geophysical Unsupervised Signal Processing

    ICA-Based seismic Deconvolution

    ICA Independent Component Analysis

    Computational model for separating multiple sources

    Produces additive subcomponents Assumption:

    - Mutual statistical independence- Source signals are non-Gaussian and i.i.d ( satisfied by

    reflectivity)

    Fuchs Anna & Pessentheiner Hannes Advanced Signal Processing 2 page 19/50

    SPSC - Geophysical Unsupervised Signal Processing

    http://find/
  • 7/27/2019 20122611 Fuchs Pessentheiner GeophysicalUnsupervisedSignalProcessing

    20/50

    SPSC - Geophysical Unsupervised Signal Processing

    Modelx = As

    x(0)x(1)

    .

    .

    .x(N 1)

    Trace

    = A

    (0)(1)

    .

    .

    .(N 1)

    Reflectivity

    A =

    h(0) 0 . . . 0 0 . . . 0h(1) h(0) . . . 0 0 . . . 0

    .

    .

    . h(1).

    . ....

    .

    .

    ..

    . . 0

    h(Nh 1)

    .

    .

    ..

    .. h(0) 0

    ..

    . 0

    .

    .

    .h

    (Nh

    1)

    . . . h(1)

    h(0)

    . . ...

    .

    0

    .

    .

    .. . .

    .

    .

    .

    .

    .

    .. . . 0

    0 0 . . . h(Nh 1) h(Nh 2) . . . h(0)

    Single Snapshot delayed versions ofx(n) and (n) Nsnapshots

    Fuchs Anna & Pessentheiner Hannes Advanced Signal Processing 2 page 20/50

    SPSC - Geophysical Unsupervised Signal Processing

    http://find/
  • 7/27/2019 20122611 Fuchs Pessentheiner GeophysicalUnsupervisedSignalProcessing

    21/50

    SPSC Geophysical Unsupervised Signal Processing

    Step 1 Rearrangement

    Obtaining of M < N mixtures

    Improvement of statistical properties of the mixture matrix

    X =

    0 0 . . . 0 x(0) . . . x(N M)... ... . . . . . . ... . . . ...0 x(0) . . . . . . x(M 2) . . . x(N 2)

    x(0) x(1) . . . . . . x(M 1) . . . x(N 1)

    Fuchs Anna & Pessentheiner Hannes Advanced Signal Processing 2 page 21/50

    SPSC - Geophysical Unsupervised Signal Processing

    http://find/
  • 7/27/2019 20122611 Fuchs Pessentheiner GeophysicalUnsupervisedSignalProcessing

    22/50

    SPSC Geophysical Unsupervised Signal Processing

    Step 2 Data Whitening

    Decorrelation of the signals

    Equalize power

    z(n) = WSOSx(n)

    WSOS obtained with SOS

    Step 3 Dimension Reduction

    Linear transformation new set of Nh mixtures

    x(n) = NTkW

    TSOSz(n)

    Fuchs Anna & Pessentheiner Hannes Advanced Signal Processing 2 page 22/50

    SPSC - Geophysical Unsupervised Signal Processing

    http://find/
  • 7/27/2019 20122611 Fuchs Pessentheiner GeophysicalUnsupervisedSignalProcessing

    23/50

    p y p g g

    Step 4 ICA

    s(n) = WHOSx(n)WHOS = QWSOS with Q given by ICAStep 5 Wavelet and Reflectivity Estimation

    si = hTi x(n)

    Optimal Pair (s(n),h) gives original reflectivity and wavelet

    hi from WHOS

    Fuchs Anna & Pessentheiner Hannes Advanced Signal Processing 2 page 23/50

    SPSC - Geophysical Unsupervised Signal Processing

    http://find/
  • 7/27/2019 20122611 Fuchs Pessentheiner GeophysicalUnsupervisedSignalProcessing

    24/50

    Results I Synthetic Data

    (a) Noiseless synthetic trace; (b) Synthetic reflectivity function; (c)Linear prediction error filter; (d) Estimated reflectivity based on

    estimated waveletFuchs Anna & Pessentheiner Hannes Advanced Signal Processing 2 page 24/50

    SPSC - Geophysical Unsupervised Signal Processing

    http://find/
  • 7/27/2019 20122611 Fuchs Pessentheiner GeophysicalUnsupervisedSignalProcessing

    25/50

    Results II

    (a) 35-points Berlage wavelet; (b) estimated wavelet by B-ICA; (c)zero-pole plot for the original wavelet; (d) zero-pole plot forestimated wavelet

    Fuchs Anna & Pessentheiner Hannes Advanced Signal Processing 2 page 25/50

    SPSC - Geophysical Unsupervised Signal Processing

    http://find/
  • 7/27/2019 20122611 Fuchs Pessentheiner GeophysicalUnsupervisedSignalProcessing

    26/50

    Summary

    Differences between supervised and unsupervised processing Predictive deconvolution to estimate reflectivity function

    Limitations of predictive deconvolution go to HOS

    Blind source separation to estimate sources

    Combination of deconvolution and BSS ICA-Based seismicDeconvolution

    Fuchs Anna & Pessentheiner Hannes Advanced Signal Processing 2 page 26/50

    SPSC - Geophysical Unsupervised Signal Processing

    http://find/
  • 7/27/2019 20122611 Fuchs Pessentheiner GeophysicalUnsupervisedSignalProcessing

    27/50

    Volcano Hazards

    many villages close to volcanos predict eruptions, tremors, earthquakes to avoid casualties

    Problem:lack of prediction knowledge

    - number of sources?- types of sources?

    Solution:use blind source separation

    for data-miningLandscape after ashfall.

    How to improve knowledge of volcanic behaviour?

    Fuchs Anna & Pessentheiner Hannes Advanced Signal Processing 2 page 27/50

    SPSC - Geophysical Unsupervised Signal Processing

    http://find/
  • 7/27/2019 20122611 Fuchs Pessentheiner GeophysicalUnsupervisedSignalProcessing

    28/50

    DUET: Degenerate Unmixing Estimation Technique

    Features for blind separation of multiple sources

    - Volcano Tectonic (VT) events- Long Period (LP) events

    based on pair of seismograph sensors (stations) second sensor enables use of a time-frequencylattice (, )

    stations separated by less than half a wavelength of interest

    performs best if theres no signal overlap between sources

    robust behaviour in echoic mixtures

    Fuchs Anna & Pessentheiner Hannes Advanced Signal Processing 2 page 28/50

    SPSC - Geophysical Unsupervised Signal Processing

    http://find/
  • 7/27/2019 20122611 Fuchs Pessentheiner GeophysicalUnsupervisedSignalProcessing

    29/50

    DUET: Degenerate Unmixing Estimation Technique

    Sensor 2

    Sensor 1

    Seismic sources & absorbing sensors.

    Are there any assumptions?Fuchs Anna & Pessentheiner Hannes Advanced Signal Processing 2 page 29/50

    SPSC - Geophysical Unsupervised Signal Processing

    http://find/
  • 7/27/2019 20122611 Fuchs Pessentheiner GeophysicalUnsupervisedSignalProcessing

    30/50

    Assumptions

    Anechoic Mixing Model

    W-Disjoint Orthogonality

    Sensor 2

    Sensor 1

    Anechoic Mixing Model.

    Source 1

    Source 2

    t

    f

    1 Hz

    5 Hz

    W-Disjoint Orthogonality.

    Fuchs Anna & Pessentheiner Hannes Advanced Signal Processing 2 page 30/50

    SPSC - Geophysical Unsupervised Signal Processing

    http://find/
  • 7/27/2019 20122611 Fuchs Pessentheiner GeophysicalUnsupervisedSignalProcessing

    31/50

    Assumptions: Anechoic Mixing Model

    no realistic model

    direct paths only (non-echoic signals)

    stations provide attenuation & delay parameters of waves

    Sensor 2

    Sensor 1

    Anechoic (Ideal) Mixing Model.

    Sensor 2

    Sensor 1

    Echoic (Realistic) Mixing Model.

    Fuchs Anna & Pessentheiner Hannes Advanced Signal Processing 2 page 31/50

    SPSC - Geophysical Unsupervised Signal Processing

    http://find/
  • 7/27/2019 20122611 Fuchs Pessentheiner GeophysicalUnsupervisedSignalProcessing

    32/50

    Assumptions: Anechoic Mixing Model contd

    model

    xk(t) :=N

    j=1

    ak,j sj(t k,j) k = {1, 2}

    where

    xk(t) . . . mixture of k-th sensor

    sj(t) . . . source signal

    ak,j . . . attenuation coefficientk,j . . . time delay

    k . . . sensor index

    j . . . source index

    Fuchs Anna & Pessentheiner Hannes Advanced Signal Processing 2 page 32/50

    SPSC - Geophysical Unsupervised Signal Processing

    http://find/
  • 7/27/2019 20122611 Fuchs Pessentheiner GeophysicalUnsupervisedSignalProcessing

    33/50

    Assumptions: W-Disjoint Orthogonality (WDO)

    disjoint supports of signals windowed Fourier transforms (F

    )

    every (, )-point in a mixture xj(t) dominated bycontribution of at most one source

    1 2 = 0

    1

    2

    Disjoint sets 1 & 2.

    t

    f

    S1

    S2

    S1

    S2S1

    S2

    frame-size

    WDO and non-WDO signals.

    Fuchs Anna & Pessentheiner Hannes Advanced Signal Processing 2 page 33/50

    SPSC - Geophysical Unsupervised Signal Processing

    http://find/
  • 7/27/2019 20122611 Fuchs Pessentheiner GeophysicalUnsupervisedSignalProcessing

    34/50

    Assumptions: W-Disjoint Orthogonality (WDO) contd

    given window function w(t) & source signals sj(t), sk(t)

    given windowed Fof sj(, ), sk(, )

    sj(, ) :=12

    +

    w(t )sj(t)eiwtdt

    where is the angular frequency and is the window shift

    WDO if supports of sj(, ), sk(, ) are disjoint

    sj(, ) sk(, ) = 0 ,, j = k

    Fuchs Anna & Pessentheiner Hannes Advanced Signal Processing 2 page 34/50

    SPSC - Geophysical Unsupervised Signal Processing

    http://find/
  • 7/27/2019 20122611 Fuchs Pessentheiner GeophysicalUnsupervisedSignalProcessing

    35/50

    Assumptions: W-Disjoint Orthogonality (WDO) contd

    if w(t) = 1- simply Fof whole mixture- signals have to be frequency-disjoint to satisfy WDO-condition

    (frequency-division multiplexed signals) if w(t) = (t)

    - signals have to be time-disjoint to satisfy WDO-condition

    (time-division multiplexed signals)

    t

    f

    S2

    S1 S1 S1

    S2 S2

    Frequency-Division Multiplexed Signals.

    t

    f

    S2S1 S1

    Time-Division Multiplexed Signals.

    How does the algorithm work?

    Fuchs Anna & Pessentheiner Hannes Advanced Signal Processing 2 page 35/50

    SPSC - Geophysical Unsupervised Signal Processing

    http://find/http://goback/
  • 7/27/2019 20122611 Fuchs Pessentheiner GeophysicalUnsupervisedSignalProcessing

    36/50

    Signal Representation

    mixture signals can be decomposed into weighted & shiftedsource signals in time & frequency domain

    xk(t) :=

    Nj=1

    ak,j sj(t k,j)

    xk(, ) :=

    N

    j=1

    ak,j sj(, ) ei

    k,j

    1

    2

    Sources, sensors, and delays.

    Fuchs Anna & Pessentheiner Hannes Advanced Signal Processing 2 page 36/50

    SPSC - Geophysical Unsupervised Signal Processing

    http://find/http://goback/
  • 7/27/2019 20122611 Fuchs Pessentheiner GeophysicalUnsupervisedSignalProcessing

    37/50

    Signal Representation contd

    without loss of generality

    a1,j = 1 1,j = 0 a2,j = aj 2,j = j

    interested in the differences of both captured signals vectorized mixture signals (k = {1, 2})

    x1(, )x2(, )

    mixture signals

    =

    1 . . . 1

    a1ei1 . . . aNe

    iN

    relative propagation matrix

    s1(, )

    . . .

    sN(, )

    source signals

    How to decompose the mixture signals?

    Fuchs Anna & Pessentheiner Hannes Advanced Signal Processing 2 page 37/50

    SPSC - Geophysical Unsupervised Signal Processing

    http://find/
  • 7/27/2019 20122611 Fuchs Pessentheiner GeophysicalUnsupervisedSignalProcessing

    38/50

    Binary Mask

    given mixture signal xk(t)

    given Fof xk(, )

    xk(, ) :=12

    +

    Nj=1

    ak,j sj(t k,j)eiwtdt

    xk(, ) := a1 s1(, ) ei1+ a2 s2(, ) ei2+ . . .

    + aN

    sN(, )

    eiN

    Fuchs Anna & Pessentheiner Hannes Advanced Signal Processing 2 page 38/50

    SPSC - Geophysical Unsupervised Signal Processing

    http://find/
  • 7/27/2019 20122611 Fuchs Pessentheiner GeophysicalUnsupervisedSignalProcessing

    39/50

    Binary Mask contd

    source separation in case of WDO using an ideal binary mask

    sj(, ) := Mj(, ) xk(, ), ,

    where

    Mj(, ) := 1 sj(, ) = 00 otherwise

    and

    Mj(, ) Mk(, ) = 0 , j = k

    Fuchs Anna & Pessentheiner Hannes Advanced Signal Processing 2 page 39/50

    SPSC - Geophysical Unsupervised Signal Processing

    http://find/http://goback/
  • 7/27/2019 20122611 Fuchs Pessentheiner GeophysicalUnsupervisedSignalProcessing

    40/50

    Binary Mask contd

    400

    600

    800

    1,0

    00

    1,2

    00

    1,4

    00

    1,6

    00

    1,8

    00

    2,0

    00

    2,2

    00

    Samples

    Freq

    uency(Hz) Binary Mask Source 2

    1

    2

    3

    Binary mask of a mixture signal for source 2.

    How do we obtain coefficients aj & j in case of WDO-signals?

    Fuchs Anna & Pessentheiner Hannes Advanced Signal Processing 2 page 40/50

    SPSC - Geophysical Unsupervised Signal Processing

    http://goforward/http://find/http://goback/
  • 7/27/2019 20122611 Fuchs Pessentheiner GeophysicalUnsupervisedSignalProcessing

    41/50

    Parameter Estimation

    WDO- & Anechoic Source Signals ratio of (, )-representations of mixtures depends on active

    source component mixing parameters only

    R(, ) :=x2(, )

    x1(, )

    assume set of (, ) on j := {(, ) : Mj(, ) = 1}

    R(, ) := aj

    eij

    aj := |R(, )| j := 1

    arg R(, )

    Do we have ideal conditions in real world?

    Fuchs Anna & Pessentheiner Hannes Advanced Signal Processing 2 page 41/50

    SPSC - Geophysical Unsupervised Signal Processing

    http://find/http://goback/
  • 7/27/2019 20122611 Fuchs Pessentheiner GeophysicalUnsupervisedSignalProcessing

    42/50

    Parameter Estimation contd

    Approximated WDO- & Echoic Source Signals in field scenarios perfect WDO never given

    high degree of WDO approximation per frame if

    - small overlap of source spectra in frequency

    - small overlap of source spectra in time increase degree of WDO approximation by

    - changing sensor position- changing window type/size (ao)

    In case of non-WDO, why is the DUET still suitable?

    Volcano Tectonic and Long Period events ...

    - hardly occur simultaneously and, thus,- exhibit high degree of WDO approximation

    Fuchs Anna & Pessentheiner Hannes Advanced Signal Processing 2 page 42/50

    SPSC - Geophysical Unsupervised Signal Processing

    http://find/
  • 7/27/2019 20122611 Fuchs Pessentheiner GeophysicalUnsupervisedSignalProcessing

    43/50

    Parameter Estimation contd

    accurate estimation of true coefficients required

    = aj 1aj

    j = (,)j|x1(, ) x2(, )|2

    (,)j |x1(, ) x2(, )|2j =

    (,)j

    |x1(, ) x2(, )|2

    (,)j

    |x1(, ) x2(, )|2

    How do we obtain mask Mj to separate source signals?

    Fuchs Anna & Pessentheiner Hannes Advanced Signal Processing 2 page 43/50

    SPSC - Geophysical Unsupervised Signal Processing

    http://find/
  • 7/27/2019 20122611 Fuchs Pessentheiner GeophysicalUnsupervisedSignalProcessing

    44/50

    Parameter Estimation & Demixing contd

    1. construct (, )-representations x1(, ) & x2(, )

    2. label each non-zero (, )-point with computed pair

    ( , )

    3. weight each pair with energy of corresponding (, )-point

    4. generate histogram of these labels

    5. find peaks in histogram for each source

    6. construct masks Mj to determine j for each source

    7. apply masks to mixture

    sj(, ) = Mj(, ) x1(, )

    8. convert each sj(, ) back into time domain

    Fuchs Anna & Pessentheiner Hannes Advanced Signal Processing 2 page 44/50

    SPSC - Geophysical Unsupervised Signal Processing

    http://find/
  • 7/27/2019 20122611 Fuchs Pessentheiner GeophysicalUnsupervisedSignalProcessing

    45/50

    Results (with both parameters and )

    (, )-lattice for one (top left) and six (top right) sources. Original, mixed, andseparated signals (bottom).

    Fuchs Anna & Pessentheiner Hannes Advanced Signal Processing 2 page 45/50

    SPSC - Geophysical Unsupervised Signal Processing

    http://find/
  • 7/27/2019 20122611 Fuchs Pessentheiner GeophysicalUnsupervisedSignalProcessing

    46/50

    Results (with single parameter )

    0 1,000 2,000 3,000 4,000 5,000 6,0000.02

    0.01

    0

    0.01

    0.02

    Samples

    0 1,000 2,000 3,000 4,000 5,000 6,0000.02

    0.01

    0

    0.01

    0.02

    Samples

    (a)

    (b)

    0 1,000 2,000 3,000 4,000 5,000 6,0000.01

    0.005

    0

    0.005

    0.01

    Samples

    0 1,000 2,000 3,000 4,000 5,000 6,0000.01

    0.005

    00.005

    0.01

    Samples

    (a)

    Mixtures of Long Period (LP) and Volcano Tectonic (VT) events at bothsensors (top/bottom left). Band-pass filtered mixtures (top/bottom right).

    Fuchs Anna & Pessentheiner Hannes Advanced Signal Processing 2 page 46/50

    SPSC - Geophysical Unsupervised Signal Processing

    http://find/
  • 7/27/2019 20122611 Fuchs Pessentheiner GeophysicalUnsupervisedSignalProcessing

    47/50

    Results (with single parameter ) contd

    0 1,000 2,000 3,000 4,000 5,000 6,0000.01

    0.005

    0

    0.005

    0.01

    Samples

    0 1,000 2,000 3,000 4,000 5,000 6,0000.02

    0.010

    0.01

    0.02

    Samples

    30 20 10 0 10 20 300

    0.05

    0.1

    0.15

    0.2

    0.25

    0.3

    0.35

    0.4

    Delay in Samples

    Energy

    Samples

    Frequency(Hz)

    0 1,000 2,000 3,000 4,000 5,000 6,000

    2

    4

    6

    8

    Samples

    Frequency(Hz)

    0 1,000 2,000 3,000 4,000 5,000 6,000

    2

    4

    6

    8

    Amp

    litude(dB)

    54

    3

    2

    1

    Amplitude(dB)

    4

    3

    2

    1

    (b)

    Band-pass filtered mixtures (top left) and corresponding delay histogram of VTand LP events (top right). Separated signals of VT (bottom top) and LP

    (bottom bottom).

    Fuchs Anna & Pessentheiner Hannes Advanced Signal Processing 2 page 47/50

    SPSC - Geophysical Unsupervised Signal Processing

    http://find/
  • 7/27/2019 20122611 Fuchs Pessentheiner GeophysicalUnsupervisedSignalProcessing

    48/50

    Conclusion

    DUET applied to geophysical data

    for blind source separation of VT and LP events results show that DUET ...

    - is a powerful tool- for identifying, separating, and locating VT and LP events

    - to better understand the source mechanism behind tremors,earthquakes, and eruptions caused by volcanic activities

    Fuchs Anna & Pessentheiner Hannes Advanced Signal Processing 2 page 48/50

    SPSC - Geophysical Unsupervised Signal Processing

    http://find/
  • 7/27/2019 20122611 Fuchs Pessentheiner GeophysicalUnsupervisedSignalProcessing

    49/50

    References

    Andre K. Takahata and Everton Z. Nadalin and Rafael Ferrari and Leonardo Tomazeli Duarte and Ricardo

    Suyama and Renato R. Lopes and Joao Marcos Travassos Romano and Martin Tygel,Unsupervised Processing of Geophysical Signals: A Review of Some Key Aspects of Blind Deconvolutionand Blind Source Separation,IEEE Signal Process. Mag., vol. 29, pp. 2735, 2012.

    E. A. Robinson,

    Predictive decomposition of time series with applications to seismic exploration,Ph.D. dissertation,Dept. Geol. Geophys., MIT, Cambridge, 1954.

    Yilmaz, O., Rickard, S.,Blind Separation of Speech Mixtures via Time-Frequency Masking,IEEE Transactions on Signal Processing, Vol. 52, No. 7, July, 2004.

    Moni, A., Bean, C. J., Lokmer, I., Rickard, S.,

    Source Separation on Seismic Data: Application in a geophysical setting,IEEE Signal Processing Magazine, May, 2012.

    Moni, A., Bean, C. J., Lokmer, I., Rickard, S.,

    Seismic Signal Source Separation,ISSC 2011, Trinity College Dublin, June 2011.

    Fuchs Anna & Pessentheiner Hannes Advanced Signal Processing 2 page 49/50

    http://find/
  • 7/27/2019 20122611 Fuchs Pessentheiner GeophysicalUnsupervisedSignalProcessing

    50/50

    http://find/