2. coesão cristalina

18
10 2. Coesão Cristalina 2.1 - Introdução Neste capítulo, iniciamos nosso estudo dos sólidos cristalinos 1 tentando responder a uma pergunta simples: por que átomos isolados se unem para formar sólidos? A resposta também parece simples: devido à atração eletrostática entre elétrons negativos e núcleos positivos. De fato, interação Coulombiana e Mecânica Quântica são suficientes para explicar a coesão cristalina 2 . Porém, esta aparente simplicidade esconde uma imensa riqueza e variedade de maneiras pelas quais os átomos se ligam entre si para formar um sólido. Neste capítulo, iremos explorar estas diferentes manifestações da coesão cristalina tendo como guia a Tabela Periódica dos elementos, auxiliar indispensável de um físico de Matéria Condensada. Neste passeio pela Tabela Periódica, ficará clara a conexão entre a estrutura eletrônica dos átomos e as formas de coesão cristalina. 2.2 - Cristais de Gases Nobres: A Interação de Van der Waals Começamos pela coluna VIII da Tabela Periódica, a dos chamados gases nobres ou inertes. Estes elementos possuem a última camada eletrônica totalmente preenchida e preferem mantê-la assim, ou seja, permanecem com sua estrutura eletrônica praticamente inerte ou inalterada mesmo na presença de outros átomos. Neste sentido eles formam o tipo mais simples de sólido, essencialmente uma coleção de átomos neutros, cada qual com sua nuvem eletrônica esférica original. Como então esses átomos neutros se atraem para formar um sólido? A explicação está na chamada interação dipolo flutuante - dipolo induzido, ou interação de Van der Waals (ou ainda interação de London). Em mecânica quântica, dizer que um átomo possui uma distribuição esférica de carga eletrônica só faz sentido em termos de média temporal: flutuações quânticas produzem dipolos elétricos instantâneos nos átomos, que por sua vez induzem a formação de dipolos nos átomos vizinhos. A interação entre estes dipolos causa uma atração entre os átomos. 1 A definição do conceito de cristal ou sólido cristalino será feita de forma mais precisa no próximo capítulo. Por ora, basta dizer que um sólido cristalino é aquele onde os átomos se organizam geometricamente de maneira ordenada. 2 Interações magnéticas contribuem pouco para a coesão e interações gravitacionais podem ser totalmente desprezadas.

Upload: nguyentu

Post on 07-Jan-2017

238 views

Category:

Documents


1 download

TRANSCRIPT

Page 1: 2. Coesão Cristalina

10

2. Coesão Cristalina

2.1 - Introdução

Neste capítulo, iniciamos nosso estudo dos sólidos cristalinos

1 tentando responder

a uma pergunta simples: por que átomos isolados se unem para formar sólidos? A

resposta também parece simples: devido à atração eletrostática entre elétrons negativos e

núcleos positivos. De fato, interação Coulombiana e Mecânica Quântica são suficientes

para explicar a coesão cristalina2. Porém, esta aparente simplicidade esconde uma imensa

riqueza e variedade de maneiras pelas quais os átomos se ligam entre si para formar um

sólido. Neste capítulo, iremos explorar estas diferentes manifestações da coesão cristalina

tendo como guia a Tabela Periódica dos elementos, auxiliar indispensável de um físico de

Matéria Condensada. Neste passeio pela Tabela Periódica, ficará clara a conexão entre a

estrutura eletrônica dos átomos e as formas de coesão cristalina.

2.2 - Cristais de Gases Nobres: A Interação de Van der Waals

Começamos pela coluna VIII da Tabela Periódica, a dos chamados gases nobres

ou inertes. Estes elementos possuem a última camada eletrônica totalmente preenchida e

preferem mantê-la assim, ou seja, permanecem com sua estrutura eletrônica praticamente

inerte ou inalterada mesmo na presença de outros átomos. Neste sentido eles formam o

tipo mais simples de sólido, essencialmente uma coleção de átomos neutros, cada qual

com sua nuvem eletrônica esférica original.

Como então esses átomos neutros se atraem para formar um sólido? A explicação

está na chamada interação dipolo flutuante - dipolo induzido, ou interação de Van der

Waals (ou ainda interação de London). Em mecânica quântica, dizer que um átomo

possui uma distribuição esférica de carga eletrônica só faz sentido em termos de média

temporal: flutuações quânticas produzem dipolos elétricos instantâneos nos átomos, que

por sua vez induzem a formação de dipolos nos átomos vizinhos. A interação entre estes

dipolos causa uma atração entre os átomos.

1 A definição do conceito de cristal ou sólido cristalino será feita de forma mais precisa no próximo

capítulo. Por ora, basta dizer que um sólido cristalino é aquele onde os átomos se organizam

geometricamente de maneira ordenada. 2 Interações magnéticas contribuem pouco para a coesão e interações gravitacionais podem ser totalmente

desprezadas.

Page 2: 2. Coesão Cristalina

11

Vejamos como isto funciona de forma mais detalhada. Considere dois átomos (1 e

2) separados por uma distância r. Em um dado instante, uma flutuação quântica produz

um momento de dipolo elétrico p1 no átomo 1. Este dipolo irá gerar um campo elétrico E

proporcional a p1/r3 na posição do átomo 2. Este campo elétrico, por sua vez, irá

polarizar o átomo 2, induzindo-lhe um momento de dipolo p2 proporcional ao campo

elétrico:

3

12

r

pEp

,

onde é a polarizabilidade do átomo em questão. A energia de interação entre os dois

dipolos p1 e p2 é proporcional ao produto de ambos dividido pelo cubo da distância entre

eles:

6

2

1

3

21

r

p

r

ppU

.

O sinal negativo indica que a interação é atrativa.

Existe portanto, a longas distâncias, uma interação atrativa entre os átomos e que

decai com r-6

. Esta é a chamada interação de Van der Waals, importante não apenas em

sólidos de gases nobres como também em outros sistemas moleculares. Apesar de termos

usado, na demonstração acima, argumentos puramente clássicos (exceto um! Qual?), a

origem da interação de Van der Waals é intrinsicamente quântica, e uma demonstração

mais rigorosa da dependência com r-6

será feita no Problema 1 da Lista 1. Uma interação

desta forma justifica o termo de correção à pressão na equação de estado de Van der

Waals, cuja descoberta, como já vimos, valeu ao físico holandês o Nobel de física em

1910. É uma interação fraca (se comparada às outras interações que veremos neste

capítulo), o que explica os baixos pontos de fusão e energias de coesão dos gases nobres

(Tabela 2.1).

(2.1)

(2.2)

p1

p2 r

Figura 2.1 - Representação clássica de dois átomos neutros interagindo através de seus dipolos (um

flutuante e o outro induzido). Os círculos brancos representam os núcleos, e os círculos pretos representam

a posição instantânea média dos elétrons.

Page 3: 2. Coesão Cristalina

12

Elemento Distância

Interatômica

(Å)

Energia de

Coesão

(eV/átomo)

Ponto de

Fusão

(K)

Parâmetros de Lennard-Jones

(10

-4 eV) (Å)

He líquido a T=0K e pressão nula 8,7 2,56

Ne 3,13 0,02 24 31 2,74

Ar 3,76 0,080 84 104 3,40

Kr 4,01 0,116 117 140 3,65

Xe 4,35 0,17 161 200 3,98

Quando os átomos se aproximam de tal modo que as funções de onda eletrônicas

começam a se superpor (overlap), uma interação repulsiva começa a ser importante. A

origem desta interação é um efeito combinado da chamada repulsão de overlap, da

repulsão Coulombiana entre os elétrons das camadas mais externas e o Princípio de

Exclusão de Pauli. Veremos isto em maior detalhe na Seção 2.3, quando tratarmos das

ligações covalentes.

Não há uma forma analítica exata para o termo repulsivo. Resultados numéricos

podem ser obtidos por cálculos de primeiros princípios, mas, em geral, formas empíricas

simples podem ser utilizadas com sucesso. A mais popular delas é uma lei de potência

repulsiva proporcional a 121 r , que, combinado ao termo atrativo de van der Waals, dá

origem ao chamado potencial de Lennard-Jones:

612

4)(rr

rvLJ

.

Os dois parâmetros livres do potencial, e são em geral ajustados para

reproduzir propriedades destes materiais no estado gasoso. Os parâmetros para os

diversos gases nobres estão listados na Tabela 2.1, e um gráfico do potencial para átomos

de Ar está mostrado na Fig. 2.2. O potencial de Lennard-Jones tem a forma típica de

basicamente todos os potenciais interatômicos: atrativo a longas distâncias, repulsivo a

curtas distâncias, com um mínimo que indica a distância de equilíbrio entre dois átomos.

Por isso, e por sua simplicidade analítica, o potencial de Lennard-Jones é bastante

utilizado em simulações do movimento atômico, conhecidas como simulações de

dinâmica molecular.

Um dado interessante da Tabela 2.1 é o comportamento do elemento He. O hélio

não se solidifica, mesmo a temperatura de zero absoluto3. A origem deste efeito está no

chamado movimento de ponto-zero: há energia cinética mesmo a temperatura zero, um

efeito intrinsicamente quântico.

3 Pode-se obter He sólido somente aplicando-se pressão hidrostática.

TABELA 2.1 – Alguns parâmetros estruturais dos sólidos de gases nobres.

Fonte: Kittel, p. 60

(2.7)

Page 4: 2. Coesão Cristalina

13

Como dissemos antes, a interação de van der Waals leva este nome porque

contém os ingredientes que justificam a chamada equação de estado do gás de van der

Waals4. Esta equação foi proposta por J. D. van der Waals em sua tese de doutorado em

1873 e é a maneira mais simples de se descrever gases não-ideais e transições de fases:

RTbvv

ap

2,

onde p é a pressão e v é o volume molar. Os ingredientes são precisamente um potencial

fortemente repulsivo a curtas distâncias (responsável pelo termo de volume excluído do

potencial) e fracamente atrativo a longas distâncias (responsável pela correção na

pressão), que estão contidos no potencial de Lennard-Jones, por exemplo. Mas os

expoentes 6 e 12 dos termos atrativo e repulsivo deste potencial não são os únicos a

reproduzir a equação de Van der Waals, esta é razoavelmente independente da forma

analítica específica do potencial interatômico.

4 Os gases não-ideais ou de Van der Waals são estudados no curso de Termodinâmica. Uma boa referência

é o livro de F. Reif, Fundamentals of Statistical and Thermal Physics, (McGraw-Hill, 1988).

0 1 2 3 4 5 6 7

-0.01

0.00

0.01

0.02

U (

eV)

R (A)

Figura 2.2 – Potencial de Lennard-Jones para o argônio. Repare o curto alcance do potencial atrativo,

quando comparado à região “excluída” devido ao forte potencial repulsivo.

(2.8)

Page 5: 2. Coesão Cristalina

14

2.3 - Energia de coesão, parâmetro de rede de equilíbrio e

módulo de bulk

A energia de coesão, o volume de equilíbrio e o módulo de bulk são três

quantidades importantes associadas à coesão cristalina. Define-se a energia de coesão

como a diferença entre a energia do conjunto de átomos isolados que compõem um sólido

e a energia do sólido. É conveniente definir a energia de coesão por átomo, de modo que

ela tenha um valor finito mesmo quando tomamos o limite termodinâmico (número

infinito de átomos).

Quando for possível escrever, ainda que de forma aproximada, a energia total do

sólido como a soma de interações entre pares de átomos, o cálculo dessa quantidade se

simplifica. Este é o caso, por exemplo, dos cristais de átomos de gases nobres que

interagem entre si pelo potencial de Lennard-Jones. Desta forma, a energia potencial por

átomo U de um sistema contendo N átomos é:

ji

ijLJ

ij

ijLJ rvN

rvN

U )(2

1)(

1 . (2.8)

A notação ij indica o somatório por todos os pares de átomos ij. Já o segundo

somatório indica a soma dupla independente por i e j, com a restrição i ≠ j e o fator ½

compensa a contagem dupla de pares. Se o número de átomos N tende a infinito e se os

átomos estão arranjados de forma periódica (como veremos de maneira mais rigorosa no

próximo capítulo), então cada átomo "enxerga" exatamente a mesma vizinhança local que

todos os demais. Desta forma, podemos contabilizar a energia potencial por átomo

escolhendo um átomo central (por exemplo i = 1) e somando por todos os vizinhos j deste

átomo central. Em outras palavras, reduz-se o somatório duplo da Eq. (2.8) a um

somatório simples:

N

j

jLJ rvU2

)(2

1 , (2.9)

onde rj r1j é a distância do íon j ao átomo central (origem). Desprezando os efeitos

quânticos, à temperatura zero a energia cinética será nula, de modo que a energia de

coesão será dada simplesmente pelo negativo da energia potencial (supondo, é claro, que

o potencial de interação entre pares vai a zero no infinito).

Page 6: 2. Coesão Cristalina

15

Figura 2.3 - Átomos arranjados segundo uma rede cúbica simples.

Vamos considerar um exemplo em que os átomos de gases nobres estão

organizados segundo uma rede cúbica simples, como mostrado na Fig. 2.35. Seja a a

distância mínima entre dois átomos quaisquer, também chamada de parâmetro de rede.

Podemos verificar que, neste caso, a energia potencial por átomo é:

)3(8)2(12)(62

1)( avavavaU LJLJLJ (2.10)

O primeiro termo desta soma é a contribuição dos 6 vizinhos mais próximos do átomo

central (primeiros vizinhos); o segundo termo representa a contribuição dos 12 segundos

vizinhos, e assim por diante. Desta forma, fica explícito que a energia potencial é uma

função do parâmetro de rede a. Se a pressão sobre o sistema também for nula, o sólido irá

adotar o parâmetro de rede a0 que minimiza a energia potencial, ou seja, temos que impor

a condição

0

0

ada

dU . (2.11)

Sabendo que, no caso da rede cúbica, o volume ocupado por átomo é 3av

(verifique!), podemos, alternativamente, escrever a energia potencial como função do

volume: U(v). Isto nos permite calcular a pressão hidrostática sobre o sólido a um volume

qualquer:

dv

dUvp )( . (2.12)

Além disso, a partir da derivada segunda da energia em relação ao volume, podemos

calcular o módulo de bulk, ou módulo de compressibilidade volumétrica:

00

02

2

00

vvdv

dpv

dv

UdvB . (2.13)

5 Na verdade, veremos no próximo capítulo que este não é o arranjo mais favorável energeticamente para os

sólidos de gases nobres.

Page 7: 2. Coesão Cristalina

16

O módulo de bulk, que tem dimensões de pressão, mede a resistência do sólido a sofrer

variações de volume sob ação de uma pressão externa, ou seja, é uma medida da rigidez

do sólido. A Tabela 2.2 mostra o módulo de bulk de alguns materiais (inclusive líquidos e

gases). O diamante “ainda” é o material menos compressível da natureza, apesar de

existirem propostas teóricas de novos materiais com módulos de bulk ainda maiores6.

Tabela 2.2 - Módulo de bulk de alguns materiais.Fonte: Wikipedia.

Material Módulo de bulk (Pa)

Diamante 442 × 109

Aço 160 × 109

Vidro 35-55 × 109

Água 2,2 × 109

Ar 1,01 × 105

2.4 - Cristais Iônicos

Investigaremos agora a coesão entre os átomos da coluna IA da Tabela Periódica

(os chamados metais alcalinos) com os átomos da coluna VIIA (halogênios). Estes

compostos, conhecidos como halogenetos alcalinos, são os protótipos de um tipo de

ligação bastante importante em FMC, a ligação iônica.

Consideremos o mais estudado destes compostos, o cloreto de sódio (NaCl),

vulgarmente conhecido como “sal de cozinha”. O mecanismo de coesão neste material

está esquematizado na Fig. 2.3. Considere um átomo de Na isolado (na fase gasosa). Sua

configuração eletrônica é 1s22s

22p

63s

1, ou seja, há um único elétron na camada mais

externa. É razoavelmente fácil arrancar este elétron e formar um íon positivo Na+. O

custo (energia de ionização) é de apenas 5,14 eV 7. Tome agora um átomo de Cl isolado,

6 "Prediction of New Low-Compressibility Solids", A. Y. Liu e M. L. Cohen, Science 245, 841 (1989).

7 Analise na tabela periódica a energia de ionização dos diversos átomos. Note que os metais alcalinos são

os átomos dos quais se pode mais facilmente arrancar um elétron.

Na + 5,14 eV Na+ + e

-

e- + Cl Cl

- + 3,61 eV

Na+ + Cl

- Na

+ Cl

- + 7,9 eV

Figura 2.3 – Mecanismo de coesão dos cristais iônicos, exemplificado para o NaCl. Veja detalhes em

Kittel, p. 67.

Page 8: 2. Coesão Cristalina

17

com sua configuração eletrônica 1s22s

22p

63s

23p

5. Com 7 elétrons na última camada,

necessita de apenas mais um para formar um íon negativo Cl- de camada fechada. De

fato, este elétron extra não custa nenhuma energia adicional, pelo contrário, o íon Cl- é

mais estável do que o átomo neutro, de forma que a formação do íon libera uma energia

de 3,61 eV (afinidade eletrônica). Esta energia, porém, não compensa a energia para

formação do Na+, de tal modo que, até o momento, nosso balanço energético é negativo.

Porém, este déficit energético, calculado a partir da ionização de cada íon isolado, é mais

do que compensado pela atração eletrostática das espécies iônicas: ao trazermos os íons

de Na+

e Cl- desde o infinito até a as posições que ocupam no cristal de NaCl há um

ganho energético de 7,9 eV por par de íons. Portanto, a energia de coesão do NaCl a

partir dos átomos neutros é de (7,9 - 5,1 + 3,6) = 6,4 eV (por par), o que representa uma

coesão extremamente forte, típica dos cristais iônicos. Veja na Tabela 2.3 as energias de

coesão dos diversos halogenetos alcalinos e compare com os valores da Tabela 2.1 para

os sólidos de gases nobres.

Li Na K Rb Cs

F 10,49 9,30 8,24 7,68 7,49

Cl 8,61 7,93 7,18 6,93

Br 8,24 7,55 6,87 6,62

I 7,68 7,05 6,49 6,30

Assim como nos cristais de gases nobres, a interação atrativa de Van der Waals e

a repulsão devido ao Princípio de Exclusão também estão presentes em cristais iônicos,

mas a atração eletrostática entre os íons é responsável pela maior parte da energia de

coesão. A contribuição eletrostática para a energia de coesão é também conhecida como

energia de Madelung, e seu cálculo nos põe em contato pela primeira vez com algumas

sutilezas e dificuldades associadas ao potencial Coulombiano ( ~ /1 r ).

Por simplicidade, consideremos um cristal iônico unidimensional de cargas

iônicas +q e -q. O íons positivos e negativos se alternam na cadeia unidimensional

infinita, como está mostrado na Fig. 2.4, e a distância entre íons é R.

Queremos calcular a energia eletrostática deste sistema infinito de cargas iônicas. Cada

par de íons contribui com uma energia de ij

rq 0

2 4 , onde o sinal + (-) corresponde a

cargas de sinal igual (oposto) e rij é a distância entre as cargas. A energia potencial

eletrostática por íon é portanto

+ + + + + + _ _ _ _ _

R

Íon de referência

Figura 2.4 - Cadeia unidimensional de íons separados por uma distância R. As linhas tracejadas marcam

os limites das camadas neutras, úteis para cálculos rapidamente convergentes da constante de Madelung.

Tabela 2.3 – Energias de coesão (em eV) de diversos halogenetos alcalinos a

partir dos íons isolados. Fonte: Ashcroft, p. 406.

Page 9: 2. Coesão Cristalina

18

0

2

0

2

0 4

1

2

1

4

1

2

1

j jji ij r

q

r

q

NU

.

O segundo somatório envolve novamente a definição de um íon de referência (veja Fig.

2.4) que escolhemos como origem (j=0), de modo que rj r0j é a distância do íon j à

origem. O índice j é um inteiro diferente de zero que vai de a . Portanto, a energia

por íon é

R

q

jR

qU

j

2

00

2

0 8

11

4

1

2

1

,

onde

00 ||

11

jj j jrR

é a chamada constante de Madelung. A primeira igualdade é a definição geral, enquanto

que a segunda corresponde ao caso específico de nosso cristal 1D. Note que a constante

de Madelung é um número adimensional relacionado às propriedades geométricas da

estrutura cristalina8 em que os íons estão localizados, não dependendo das cargas dos íons

q e nem mesmo da distância mínima entre os íons, R. Além disso, deve ser um número

positivo se o cristal iônico é estável (U 0 ). Note ainda a mudança na convenção de

sinal: + (-) corresponde agora a pares de cargas de sinal oposto (igual).

Figura 2.5 – Convergência numérica da constante de Madelung, dependendo da maneira como os termos

são somados. Os quadrados (convergência lenta) correspondem à soma expressa na Eq. (2.12), enquanto os

círculos (convergência rápida) correspondem à Eq. (2.13).

Vamos então calcular a constante de Madelung para o nosso cristal iônico

unidimensional. Agrupando os termos +j e -j na soma, temos:

8 Aguarde a definição mais rigorosa deste conceito para o próximo capítulo. Por ora, entenda como

estrutura cristalina o conjunto de posições espaciais que os íons ocupam.

(2.14)

(2.15)

(2.16)

0 2 4 6 8 10

1.0

1.2

1.4

1.6

1.8

2.0

2 ln2

Termos

Page 10: 2. Coesão Cristalina

19

2

1

1

1

2

1

3

1

4 .

Se tentássemos realizar numericamente esta soma exatamente na ordem descrita acima

notaríamos uma convergência bastante lenta para o resultado final (Fig. 2.5). Para este

caso simples unidimensional, a série pode ser somada exatamente usando-se a expansão

ln( )1 2 32 3 x x x x , de modo que 2 2ln . Porém, em cristais de 2 ou 3

dimensões a soma deve ser realizada numericamente, e aí nos deparamos com a

dificuldade associada ao fato de que este tipo de série é condicionalmente convergente,

significando que a convergência depende da ordem em que os termos são somados.

Há um método bastante útil para convergir a soma rapidamente. O truque consiste

em somar por camadas neutras do cristal, indicadas por linhas tracejadas na Fig. 2.4. A

primeira camada inclui o íon de referência e metade de cada um dos vizinhos mais

próximos de modo que a carga total da primeira camada é 1 1 2 1 2 0. Para cada

metade de carga inclui-se um fator adicional de ½. Considerando todas as células,

obtemos

1

1

1

1

1

2

1

2

1

3

1

3

1

4 .

Uma breve inspeção nos faz concluir que esta série é idêntica à da Eq. (2.11). O

reagrupamento dos termos desta maneira, porém, permite uma rápida convergência da

mesma, como mostrado na Fig. 2.5. Na lista de exercícios deste Capítulo, aplica-se o

método de Madelung para um cristal bidimensional.

A Fig. 2.6 mostra a densidade eletrônica em um plano do cristal de NaCl. Nota-se

que os íons são praticamente esféricos.

Figura 2.6 - Densidade eletrônica em um plano do cristal de NaCl. Fonte: Ashcroft e Mermim.

(2.17)

(2.18)

Page 11: 2. Coesão Cristalina

20

Dissemos que, em um cristal iônico formado por elementos das colunas I-VII

existe uma transferência de 1 elétron do cátion para o ânion. Na realidade, esta

transferência eletrônica nunca é completa: quando os íons se juntam para formar o sólido,

existe ainda uma certa probabilidade de que este elétron passe uma fração de seu tempo

em orbitais do cátion. De fato, é impossível associar rigorosamente uma carga a um íon

específico em um sólido ou molécula. No entanto, há algumas receitas que são usadas

para estimar a quantidade fracionária de carga eletrônica que é transferida do cátion para

o ânion9. Esta quantidade de carga está também associada à ionicidade ou caráter iônico

de uma ligação química. A Tabela 2.4 apresenta o caráter iônico de vários compostos, a

partir da definição de J. C. Phillips10

. Note que os halogenetos alcalinos apresentam uma

ionicidade bem próxima de 1, indicando uma transferência quase completa de um elétron.

Cristal Ionicidade Cristal Ionicidade Cristal Ionicidade

Si 0,00 CdSe 0,70 AgBr 0,85

SiC 0,18 CdTe 0,67 AgI 0,77

Ge 0,00 InP 0,42 MgO 0,84

ZnO 0,62 InAs 0,36 MgS 0,79

ZnSe 0,62 InSb 0,32 MgSe 0,79

ZnTe 0,63 GaAs 0,31 LiF 0,92

CdO 0,79 GaSb 0,26 NaCl 0,94

CdS 0,69 AgCl 0,86 RbF 0,96

Consideremos agora os compostos II-VI, ou seja, formados por elementos das

colunas IIA e VIA da Tabela Periódica (por exemplo, MgS, MgO, etc.). A Tabela 2.3

mostra que estes compostos têm ionicidades menores que as dos halogenetos alcalinos.

Isto ocorre porque os compostos II-VI apresentam menor diferença de

eletronegatividades entre seus constituintes. Como regra geral, quanto menor a diferença

entre eletronegatividades, menor a transferência de carga eletrônica. Deste modo, espera-

se que os compostos III-V (GaAs, InP, etc.) tenham ionicidade ainda menor, e que os

sólidos formados por elementos do grupo IV (C, Si, Ge, etc) tenham ionicidade nula. Isto

é confirmado pelos dados da Tabela 2.3 e está ilustrado pictoricamente na Fig. 2.7.

Nestes compostos, um novo tipo de coesão, onde os elétrons são compartilhados ao invés

de transferidos, passa a atuar: as ligações covalentes.

9 http://en.wikipedia.org/wiki/Partial_charge

10 J. C. Phillips, Bonds and Bands in Semiconductors, Elsevier (1973).

Tabela 2.4 – Ionicidade de Phillips de vários materiais. Fonte: Kittel, p. 76.

Page 12: 2. Coesão Cristalina

21

2.5 - Ligações Covalentes

Ligações covalentes ocorrem em uma grande variedade de sólidos e moléculas.

Entre os sólidos, os exemplos típicos são os elementos da coluna IVA (C, Si, Ge, Sn).

Iniciaremos nosso estudo deste tipo de coesão pela molécula mais simples da natureza, a

H2

, composta por apenas 2 prótons e 1 elétron, como mostra a Fig. 2.7 (a).

No estado fundamental de um átomo de hidrogênio isolado, temos o único elétron

ocupando o orbital atômico 1s. É razoável imaginar, portanto, que se os dois átomos de H

estiverem bastante afastados um do outro, o único elétron deverá estar em um dos dois

orbitais 1s. Isto faz com que estes dois orbitais, que denominamos 1s e 2s ,

correspondendo aos átomos 1 e 2 que irão formar a molécula (Fig. 2.7(b)), representem

uma boa escolha de base para descrevermos a função de onda da molécula. Assim,

fazemos o ansatz

2211 susu .

Figura 2.7 – Desenho esquemático da distribuição espacial dos 8 elétrons de valência (por par de átomos)

em NaCl, MgO, GaAs e Si. Note a mudança do regime de coesão, desde completamente iônico (NaCl),

até completamente covalente (Si), passando por regimes intermediários onde a coesão é parcialmente

iônica e parcialmente covalente. Ashcroft, p. 388.

(2.19)

Cl7

+

Cl7

+ Mg

2+

O6+ Na

1+

Na1+

O6+

Mg2+

Ga3+ As

5+

Ga3+

As5+

Si4+

Si4+

Si4+

Si4+

Page 13: 2. Coesão Cristalina

22

Os valores dos coeficientes u1 e u2 são obtidos minimizando-se a energia

HE com relação a

1u e 2u , onde H é a Hamiltoniana do elétron na molécula.

Encontram-se (lista de exercícios) dois auto-estados: 21)1(2

1, ss

Sal

, com energias

SVVE sal ,. Para simplificar a discussão, vamos ignorar inicialmente o termo SV

(repulsão de overlap), 21 ssS . Isto corresponde, na prática, à aproximação S<<1, ou

seja, overlap pequeno. O termo 2211sHssHss é aproximadamente

11 a

energia do orbital 1s do hidrogênio e V é a energia covalente (a ser calculada também na

lista de exercícios), e representa o decréscimo de energia associada à formação da ligação

covalente. Portanto, o nível s se divide em dois, como mostra a Fig. 2.8(c), o de mais

baixa energia conhecido como estado ligante e o de mais alta energia como estado anti-

ligante. Note que o estado fundamental (ligante) corresponde a um acúmulo de carga

eletrônica na região entre os átomos, ao contrário do estado anti-ligante, que apresenta

um mínimo de carga eletrônica (2

).

11

A energia s é na verdade menor que a do estado 1s do H devido ao potencial atrativo do segundo núcleo.

(a)

e-

H+

H+

1 2

s1 s2

(b)

s

s + V

s - V

(c)

Ligante

Figura 2.7 – Ligação covalente na molécula de H . Por simplicidade, estamos ignorando a repulsão de

overlap, que será discutida mais adiante.

Anti-ligante

Page 14: 2. Coesão Cristalina

23

O termo SV é positivo (S é positivo se as funções de onda têm o mesmo sinal).

Representa portanto uma repulsão, e será tanto mais importante quanto maior for a

superposição entre os orbitais atômicos, ou seja, quanto menor for a distância entre os

átomos. Esta é a chamada "repulsão de overlap" e tem origem puramente quântica. Note

que está presente mesmo que o sistema tenha apenas um elétron, como no caso da

molécula de H2

, ou seja, pode ser claramente diferenciada da repulsão Coulombiana

entre elétrons (que estaria presente também se a molécula tivesse mais que 1 elétron).

Se o sistema for composto por mais de um elétron, o Princípio de Exclusão de

Pauli passa a exercer um papel importante. Cada nível eletrônico pode ser ocupado por

no máximo 2 elétrons com spins opostos. De maneira muito aproximada, poderíamos

calcular o decréscimo de energia eletrônica como mostrado na Fig. 2.8: -V, -2V, -V e 0

para 1, 2, 3 e 4 elétrons, respectivamente. Este argumento é aproximado porque ignora

não apenas a repulsão de overlap como também, como já adiantamos, um termo extra na

Hamiltoniana que aparece quando mais de um elétron está presente no sistema: a

repulsão Coulombiana entre os elétrons, que aumenta a energia e portanto diminui a

estabilidade da ligação covalente. Portanto, para um sistema com 4 elétrons (por

exemplo, dois átomos de He), há 2 elétrons em estados ligantes e 2 elétrons em estados

anti-ligantes, o que torna a ligação covalente efetivamente nula e, levando-se em conta a

repulsão Coulombiana entre os elétrons, ocorre de fato uma repulsão entre os átomos. É

este efeito combinado do Princípio de Pauli e da interação entre os elétrons, somado com

a repulsão de overlap e a repulsão Coulombiana entre os núcleos (que também começa a

ser importante a curtas distâncias) que dá origem à repulsão a curtas distâncias entre

átomos de camadas fechadas como os gases nobres.

Portanto, uma ligação covalente é mais forte quando contém exatamente 2

elétrons. Em sólidos do grupo IV, há 4 elétrons de valência que podem portanto formar 4

ligações covalentes por átomo. Como veremos nos próximos capítulos, a estrutura típica

destes materiais é a chamada estrutura do diamante, na qual cada átomo fica no centro

de um tetraedro formado por seus 4 primeiros vizinhos, com os quais forma ligações

covalentes. Analogamente à molécula de H2

, há um acúmulo de elétrons ao longo da

direção que une os átomos. Isto fica claro na Fig. 2.9, que mostra a densidade de elétrons

das camadas de valência em um plano de um cristal de Si, calculada por métodos de

primeiros princípios. Note que, ao contrário das interações iônica e de Van der Waals que

Figura 2.8 – Variação de energia com relação a s em função do número de elétrons na ligação covalente,

ignorando-se os efeitos de repulsão Coulombiana entre os elétrons.

U = -V U = -V U = -2V U = 0

s

s + V

s - V

Page 15: 2. Coesão Cristalina

24

são esfericamente simétricas, a ligação covalente é extremamente direcionada. Já a Fig.

2.10 mostra a densidade eletrônica de sólidos formados por átomos das colunas III-V e

II-VI da tabela periódica, onde as ligações são parcialmente iônicas e parcialmente

covalentes.

Figura 2.10 - Densidade eletrônica dos elétrons de valência em um composto III-V (GaAs) e outro II-VI

(CdTe). Note que as ligações são parcialmente iônicas e parcialmente covalentes. Fonte: T.Kajitani et al., J.

Crystal Growth 229, 130 (2001).

2.6 - Coesão Metálica

No que diz respeito às propriedades elétricas, todas as três classes de sólidos

discutidas até agora (cristais de gases nobres, cristais iônicos e cristais covalentes do

grupo IV) são classificados como isolantes, ou seja, apresentam baixa condutividade

Figura 2.9 – Contribuição dos elétrons de valência para a densidade eletrônica em um plano do cristal de

Si. As posições atômicas estão marcadas com um . A escala de cinza varia desde branco (altas

densidades) até preto (baixas densidades). Note o acúmulo de elétrons ao longo da direção que une os

átomos.

Page 16: 2. Coesão Cristalina

25

elétrica. Metais formam uma classe diferente e importante de materiais, apresentando

diversos fenômenos inexistentes nos isolantes. Mais de 2/3 dos elementos puros são

metais, apresentando configurações eletrônicas distintas e portanto distintos mecanismos

de coesão. Iremos considerar três classes representativas: os metais alcalinos, os metais

de transição, e os metais nobres.

Os metais alcalinos formam o tipo mais simples de metal. São formados pelos

elementos da coluna IA da Tabela Periódica (Li, Na, K, etc.). Como descrito na discussão

sobre halogenetos alcalinos, estes elementos possuem um elétron facilmente ionizável no

orbital s da última camada. Ao formar-se o sólido, estes elétrons tornam-se

deslocalizados e podem mover-se quase livremente pelo cristal, ocupando todas as

regiões entre os átomos (veja Fig. 2.11) e são os responsáveis pela condução de

eletricidade nestes materiais. Além disso, participam de forma importante na coesão

cristalina ao exercerem uma blindagem bastante efetiva dos íons. Veremos nos capítulos

seguintes que, em inúmeras situações, os metais alcalinos são o sistema físico mais

próximo do modelo idealizado de gás de elétrons livres, que estudaremos no Capítulo 6.

Na ocasião, estudaremos com um pouco mais de detalhe a coesão metálica.

Os metais de transição ocupam uma boa parte da Tabela Periódica: as 3 fileiras

que se estendem desde a coluna IB até à VIIIB. Nestes metais, além dos elétrons quase-

livres derivados dos orbitais s da ultima camada, que exercem função semelhante à dos

metais alcalinos, há os elétrons originários de orbitais d da penúltima camada. Estes

orbitais são gradualmente preenchidos desde a coluna I até a VIII. Os elétrons d

contribuem ativamente na coesão destes materiais formando ligações covalentes entre

átomos vizinhos. Isto faz com que os metais de transição tenham energias de coesão e

temperaturas de fusão mais altas do que os metais alcalinos.

Os metais nobres (Cu, Ag, Au) possuem os orbitais d da penúltima camada

totalmente preenchidos e portanto não formam ligações covalentes entre si. Mas

contribuem na coesão cristalina através de interações de Van der Waals entre átomos

vizinhos.

Na1+

Na1+

Na1+

Na1+

Na1+

Na1+

Na1+

Na1+

Na1+

Figura 2.11 – Distribuição eletrônica esquemática (região cinza) em um metal alcalino. Neste tipo de

material, os elétrons se distribuem quase uniformemente pelas regiões intersticiais.

Page 17: 2. Coesão Cristalina

26

Na Tabela 2.5, energias de coesão e pontos de fusão para alguns metais alcalinos,

de transição e nobres.

Elemento Tfusão(K) Ecoesão

(eV/átomo)

Elemento Tfusão(K) Ecoesão

(eV/átomo)

Li 453 1.63 Mn 1518 2.92

Na 371 1.113 Fe 1808 4.28

K 337 0.934 Ni 1726 4.44

Ti 1933 4.85 Pt 2045 5.84

Nb 2741 7.57 Cu 1356 3.49

Cr 2130 4.10 Ag 1234 2.95

W 3683 8.90 Au 1337 3.81

2.7 - Pontes de Hidrogênio

O hidrogênio ocupa uma posição única entre os elementos. Pode compartilhar seu

único elétron em uma única ligação covalente, mas isso não é de muita utilidade em

sólidos que necessitam uma conectividade tridimensional da rede. Por outro lado, por ter

apenas 1 elétron de valência, se poderia esperar um comportamento similar aos demais

elementos da coluna IA, ou seja, a constituição de um sólido metálico (como os metais

alcalinos) ou a formação de cristais iônicos com halogênios. Com relação ao sólido

metálico, esta fase já foi predita teoricamente para ocorrer a altíssimas pressões, mas

ainda não foi observada experimentalmente12

. Há, porém, uma outra peculiaridade do

átomo de hidrogênio que impede este comportamento: ao perder seu elétron, o íon de

hidrogênio é nada mais que um próton, 105 vezes menor do que qualquer outro íon. Isto

permite uma aproximação grande entre dois íons negativos, com o íon H+ fazendo uma

“ponte” entre os dois (Fig. 2.12). Esta aproximação, porém, impede que outros íons

negativos se aproximem. A ponte de hidrogênio é portanto uma ligação essencialmente

iônica entre dois átomos apenas, em geral átomos de alta eletronegatividade (F, N, O,

etc). Exerce um papel importante em sistemas biológicos (por exemplo, é responsável

pela ligação entre cadeias do DNA) e em gelo (veja Fig. 2.13) e água.

12

A fase mais estável do hidrogênio a pressões ambientes é um sólido molecular, onde moléculas de H2

formam as unidade básicas (H.-K. Mao e R. J. Hemley, Rev. Mod. Phys. 66, 671 (1994)).

Tabela 2.5 - Temperaturas de fusão e energias de coesão de diversos metais. Fonte: Kittel e Ashcroft.

Page 18: 2. Coesão Cristalina

27

Leituras Complementares: Kittel, Capítulo 3.

Ashcroft-Mermim, Capítulos 19 e 20. O método da soma por camadas neutras

para a constante de Madelung está bem discutido aí.

Ibach-Lüth, Capítulo 1.

Uma boa introdução ao conceito de ligação covalente se encontra em W. A.

Harrison, Electronic Structure and The Properties of Solids, (Dover, 1989),

Capítulo 1.

F. Reif, Fundamentals of Statistical and Thermal Physics, (McGraw-Hill,

1988). No Cap. 10 há uma discussão detalhada dos gases de Van der Waals.

Uma descrição mais detalhada da molécula de H2+ está em B. H. Bransden e

C. J. Joachain, Physics of Atoms and Molecules, (Longman, 1990), Cap. 9.

Uma outra abordagem, também detalhada, para a ligação covalente

(especificamente para a molécula de Li2+, bastante semelhante à molécula de

H2+), está em W. A. Harrison, Elementary Electronic Structure, (World

Scientific, 1999), Cap. 1.

F-

F-

H+

Figura 2.12 – Ponte de hidrogênio na molécula de HF2-. Note que o pequeno tamanho do próton permite

uma grande aproximação entre os dois ânions, o que por sua vez impede a aproximação de demais ânions.

Veja Kittel, p. 77.

Figura 2.13 – Desenho esquemático bidimensional da estrutura do gelo (H2O). As linhas tracejadas

representam as pontes de hidrogênio.